Metamath Proof Explorer


Theorem sltmulneg2d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1 φ A No
sltmulneg.2 φ B No
sltmulneg.3 φ C No
sltmulneg.4 φ C < s 0 s
Assertion sltmulneg2d φ A < s B C s B < s C s A

Proof

Step Hyp Ref Expression
1 sltmulneg.1 φ A No
2 sltmulneg.2 φ B No
3 sltmulneg.3 φ C No
4 sltmulneg.4 φ C < s 0 s
5 1 2 3 4 sltmulneg1d φ A < s B B s C < s A s C
6 2 3 mulscomd φ B s C = C s B
7 1 3 mulscomd φ A s C = C s A
8 6 7 breq12d φ B s C < s A s C C s B < s C s A
9 5 8 bitrd φ A < s B C s B < s C s A