Metamath Proof Explorer


Theorem sltn0

Description: If X is less than Y , then either (LeftY ) or ( RightX ) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024)

Ref Expression
Assertion sltn0 Could not format assertion : No typesetting found for |- ( ( X e. No /\ Y e. No /\ X ( ( _Left ` Y ) =/= (/) \/ ( _Right ` X ) =/= (/) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lltropt Could not format ( _Left ` X ) <
2 1 a1i Could not format ( ( X e. No /\ Y e. No ) -> ( _Left ` X ) < ( _Left ` X ) <
3 lltropt Could not format ( _Left ` Y ) <
4 3 a1i Could not format ( ( X e. No /\ Y e. No ) -> ( _Left ` Y ) < ( _Left ` Y ) <
5 lrcut Could not format ( X e. No -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) : No typesetting found for |- ( X e. No -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) with typecode |-
6 5 eqcomd Could not format ( X e. No -> X = ( ( _Left ` X ) |s ( _Right ` X ) ) ) : No typesetting found for |- ( X e. No -> X = ( ( _Left ` X ) |s ( _Right ` X ) ) ) with typecode |-
7 6 adantr Could not format ( ( X e. No /\ Y e. No ) -> X = ( ( _Left ` X ) |s ( _Right ` X ) ) ) : No typesetting found for |- ( ( X e. No /\ Y e. No ) -> X = ( ( _Left ` X ) |s ( _Right ` X ) ) ) with typecode |-
8 lrcut Could not format ( Y e. No -> ( ( _Left ` Y ) |s ( _Right ` Y ) ) = Y ) : No typesetting found for |- ( Y e. No -> ( ( _Left ` Y ) |s ( _Right ` Y ) ) = Y ) with typecode |-
9 8 eqcomd Could not format ( Y e. No -> Y = ( ( _Left ` Y ) |s ( _Right ` Y ) ) ) : No typesetting found for |- ( Y e. No -> Y = ( ( _Left ` Y ) |s ( _Right ` Y ) ) ) with typecode |-
10 9 adantl Could not format ( ( X e. No /\ Y e. No ) -> Y = ( ( _Left ` Y ) |s ( _Right ` Y ) ) ) : No typesetting found for |- ( ( X e. No /\ Y e. No ) -> Y = ( ( _Left ` Y ) |s ( _Right ` Y ) ) ) with typecode |-
11 sltrec Could not format ( ( ( ( _Left ` X ) < ( X ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) ) ) : No typesetting found for |- ( ( ( ( _Left ` X ) < ( X ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) ) ) with typecode |-
12 2 4 7 10 11 syl22anc Could not format ( ( X e. No /\ Y e. No ) -> ( X ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) ) ) : No typesetting found for |- ( ( X e. No /\ Y e. No ) -> ( X ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) ) ) with typecode |-
13 12 biimp3a Could not format ( ( X e. No /\ Y e. No /\ X ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) ) : No typesetting found for |- ( ( X e. No /\ Y e. No /\ X ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) ) with typecode |-
14 rexn0 Could not format ( E. y e. ( _Left ` Y ) X <_s y -> ( _Left ` Y ) =/= (/) ) : No typesetting found for |- ( E. y e. ( _Left ` Y ) X <_s y -> ( _Left ` Y ) =/= (/) ) with typecode |-
15 rexn0 Could not format ( E. x e. ( _Right ` X ) x <_s Y -> ( _Right ` X ) =/= (/) ) : No typesetting found for |- ( E. x e. ( _Right ` X ) x <_s Y -> ( _Right ` X ) =/= (/) ) with typecode |-
16 14 15 orim12i Could not format ( ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) -> ( ( _Left ` Y ) =/= (/) \/ ( _Right ` X ) =/= (/) ) ) : No typesetting found for |- ( ( E. y e. ( _Left ` Y ) X <_s y \/ E. x e. ( _Right ` X ) x <_s Y ) -> ( ( _Left ` Y ) =/= (/) \/ ( _Right ` X ) =/= (/) ) ) with typecode |-
17 13 16 syl Could not format ( ( X e. No /\ Y e. No /\ X ( ( _Left ` Y ) =/= (/) \/ ( _Right ` X ) =/= (/) ) ) : No typesetting found for |- ( ( X e. No /\ Y e. No /\ X ( ( _Left ` Y ) =/= (/) \/ ( _Right ` X ) =/= (/) ) ) with typecode |-