Metamath Proof Explorer


Theorem sltne

Description: Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion sltne A No A < s B B A

Proof

Step Hyp Ref Expression
1 sltirr A No ¬ A < s A
2 breq2 B = A A < s B A < s A
3 2 notbid B = A ¬ A < s B ¬ A < s A
4 1 3 syl5ibrcom A No B = A ¬ A < s B
5 4 necon2ad A No A < s B B A
6 5 imp A No A < s B B A