Database
SURREAL NUMBERS
Initial consequences of Alling's axioms
Ordering Theorems
sltne
Next ⟩
sltlend
Metamath Proof Explorer
Ascii
Unicode
Theorem
sltne
Description:
Surreal less-than implies not equal.
(Contributed by
Scott Fenton
, 12-Mar-2025)
Ref
Expression
Assertion
sltne
⊢
A
∈
No
∧
A
<
s
B
→
B
≠
A
Proof
Step
Hyp
Ref
Expression
1
sltirr
⊢
A
∈
No
→
¬
A
<
s
A
2
breq2
⊢
B
=
A
→
A
<
s
B
↔
A
<
s
A
3
2
notbid
⊢
B
=
A
→
¬
A
<
s
B
↔
¬
A
<
s
A
4
1
3
syl5ibrcom
⊢
A
∈
No
→
B
=
A
→
¬
A
<
s
B
5
4
necon2ad
⊢
A
∈
No
→
A
<
s
B
→
B
≠
A
6
5
imp
⊢
A
∈
No
∧
A
<
s
B
→
B
≠
A