Metamath Proof Explorer


Theorem sltnegd

Description: Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltnegd.1 φ A No
sltnegd.2 φ B No
Assertion sltnegd Could not format assertion : No typesetting found for |- ( ph -> ( A ( -us ` B )

Proof

Step Hyp Ref Expression
1 sltnegd.1 φ A No
2 sltnegd.2 φ B No
3 sltneg Could not format ( ( A e. No /\ B e. No ) -> ( A ( -us ` B ) ( A ( -us ` B )
4 1 2 3 syl2anc Could not format ( ph -> ( A ( -us ` B ) ( A ( -us ` B )