Metamath Proof Explorer


Theorem sltsub1

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion sltsub1 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A -s C )

Proof

Step Hyp Ref Expression
1 negscl Could not format ( C e. No -> ( -us ` C ) e. No ) : No typesetting found for |- ( C e. No -> ( -us ` C ) e. No ) with typecode |-
2 sltadd1 Could not format ( ( A e. No /\ B e. No /\ ( -us ` C ) e. No ) -> ( A ( A +s ( -us ` C ) ) ( A ( A +s ( -us ` C ) )
3 1 2 syl3an3 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A +s ( -us ` C ) ) ( A ( A +s ( -us ` C ) )
4 subsval Could not format ( ( A e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) with typecode |-
5 4 3adant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) with typecode |-
6 subsval Could not format ( ( B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) with typecode |-
7 6 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) with typecode |-
8 5 7 breq12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s C ) ( A +s ( -us ` C ) ) ( ( A -s C ) ( A +s ( -us ` C ) )
9 3 8 bitr4d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A -s C ) ( A ( A -s C )