Metamath Proof Explorer


Theorem sltsub2

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion sltsub2 A No B No C No A < s B C - s B < s C - s A

Proof

Step Hyp Ref Expression
1 negscl B No + s B No
2 1 3ad2ant2 A No B No C No + s B No
3 negscl A No + s A No
4 3 3ad2ant1 A No B No C No + s A No
5 simp3 A No B No C No C No
6 2 4 5 sltadd2d A No B No C No + s B < s + s A C + s + s B < s C + s + s A
7 sltneg A No B No A < s B + s B < s + s A
8 7 3adant3 A No B No C No A < s B + s B < s + s A
9 simp2 A No B No C No B No
10 5 9 subsvald A No B No C No C - s B = C + s + s B
11 simp1 A No B No C No A No
12 5 11 subsvald A No B No C No C - s A = C + s + s A
13 10 12 breq12d A No B No C No C - s B < s C - s A C + s + s B < s C + s + s A
14 6 8 13 3bitr4d A No B No C No A < s B C - s B < s C - s A