Metamath Proof Explorer


Theorem sltsub2

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion sltsub2 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C -s B )

Proof

Step Hyp Ref Expression
1 negscl Could not format ( B e. No -> ( -us ` B ) e. No ) : No typesetting found for |- ( B e. No -> ( -us ` B ) e. No ) with typecode |-
2 1 3ad2ant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( -us ` B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( -us ` B ) e. No ) with typecode |-
3 negscl Could not format ( A e. No -> ( -us ` A ) e. No ) : No typesetting found for |- ( A e. No -> ( -us ` A ) e. No ) with typecode |-
4 3 3ad2ant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( -us ` A ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( -us ` A ) e. No ) with typecode |-
5 simp3 A No B No C No C No
6 2 4 5 sltadd2d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( -us ` B ) ( C +s ( -us ` B ) ) ( ( -us ` B ) ( C +s ( -us ` B ) )
7 sltneg Could not format ( ( A e. No /\ B e. No ) -> ( A ( -us ` B ) ( A ( -us ` B )
8 7 3adant3 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( -us ` B ) ( A ( -us ` B )
9 simp2 A No B No C No B No
10 5 9 subsvald Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( C -s B ) = ( C +s ( -us ` B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( C -s B ) = ( C +s ( -us ` B ) ) ) with typecode |-
11 simp1 A No B No C No A No
12 5 11 subsvald Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( C -s A ) = ( C +s ( -us ` A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( C -s A ) = ( C +s ( -us ` A ) ) ) with typecode |-
13 10 12 breq12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C -s B ) ( C +s ( -us ` B ) ) ( ( C -s B ) ( C +s ( -us ` B ) )
14 6 8 13 3bitr4d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C -s B ) ( A ( C -s B )