Metamath Proof Explorer


Theorem sltsubsub2bd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φ A No
sltsubsubbd.2 φ B No
sltsubsubbd.3 φ C No
sltsubsubbd.4 φ D No
Assertion sltsubsub2bd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s B ) ( D -s C )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φ A No
2 sltsubsubbd.2 φ B No
3 sltsubsubbd.3 φ C No
4 sltsubsubbd.4 φ D No
5 4 3 subscld Could not format ( ph -> ( D -s C ) e. No ) : No typesetting found for |- ( ph -> ( D -s C ) e. No ) with typecode |-
6 2 1 subscld Could not format ( ph -> ( B -s A ) e. No ) : No typesetting found for |- ( ph -> ( B -s A ) e. No ) with typecode |-
7 5 6 sltnegd Could not format ( ph -> ( ( D -s C ) ( -us ` ( B -s A ) ) ( ( D -s C ) ( -us ` ( B -s A ) )
8 2 1 negsubsdi2d Could not format ( ph -> ( -us ` ( B -s A ) ) = ( A -s B ) ) : No typesetting found for |- ( ph -> ( -us ` ( B -s A ) ) = ( A -s B ) ) with typecode |-
9 4 3 negsubsdi2d Could not format ( ph -> ( -us ` ( D -s C ) ) = ( C -s D ) ) : No typesetting found for |- ( ph -> ( -us ` ( D -s C ) ) = ( C -s D ) ) with typecode |-
10 8 9 breq12d Could not format ( ph -> ( ( -us ` ( B -s A ) ) ( A -s B ) ( ( -us ` ( B -s A ) ) ( A -s B )
11 7 10 bitr2d Could not format ( ph -> ( ( A -s B ) ( D -s C ) ( ( A -s B ) ( D -s C )