Metamath Proof Explorer


Theorem sltsubsub3bd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1 φ A No
sltsubsubbd.2 φ B No
sltsubsubbd.3 φ C No
sltsubsubbd.4 φ D No
Assertion sltsubsub3bd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s C ) ( D -s C )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 φ A No
2 sltsubsubbd.2 φ B No
3 sltsubsubbd.3 φ C No
4 sltsubsubbd.4 φ D No
5 1 2 3 4 sltsubsubbd Could not format ( ph -> ( ( A -s C ) ( A -s B ) ( ( A -s C ) ( A -s B )
6 1 2 3 4 sltsubsub2bd Could not format ( ph -> ( ( A -s B ) ( D -s C ) ( ( A -s B ) ( D -s C )
7 5 6 bitrd Could not format ( ph -> ( ( A -s C ) ( D -s C ) ( ( A -s C ) ( D -s C )