Metamath Proof Explorer
Description: Equivalence for the surreal less-than relationship between differences.
(Contributed by Scott Fenton, 21-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
sltsubsubbd.1 |
|
|
|
sltsubsubbd.2 |
|
|
|
sltsubsubbd.3 |
|
|
|
sltsubsubbd.4 |
|
|
Assertion |
sltsubsub3bd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubsubbd.1 |
|
2 |
|
sltsubsubbd.2 |
|
3 |
|
sltsubsubbd.3 |
|
4 |
|
sltsubsubbd.4 |
|
5 |
1 2 3 4
|
sltsubsubbd |
|
6 |
1 2 3 4
|
sltsubsub2bd |
|
7 |
5 6
|
bitrd |
|