Metamath Proof Explorer
Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
slttrd.1 |
|
|
|
slttrd.2 |
|
|
|
slttrd.3 |
|
|
|
slttrd.4 |
|
|
|
slttrd.5 |
|
|
Assertion |
slttrd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slttrd.1 |
|
| 2 |
|
slttrd.2 |
|
| 3 |
|
slttrd.3 |
|
| 4 |
|
slttrd.4 |
|
| 5 |
|
slttrd.5 |
|
| 6 |
|
slttr |
|
| 7 |
1 2 3 6
|
syl3anc |
|
| 8 |
4 5 7
|
mp2and |
|