Step |
Hyp |
Ref |
Expression |
1 |
|
fislw.1 |
|
2 |
|
slwhash.3 |
|
3 |
|
slwhash.4 |
|
4 |
|
slwsubg |
|
5 |
3 4
|
syl |
|
6 |
|
subgrcl |
|
7 |
5 6
|
syl |
|
8 |
|
slwprm |
|
9 |
3 8
|
syl |
|
10 |
1
|
grpbn0 |
|
11 |
7 10
|
syl |
|
12 |
|
hashnncl |
|
13 |
2 12
|
syl |
|
14 |
11 13
|
mpbird |
|
15 |
9 14
|
pccld |
|
16 |
|
pcdvds |
|
17 |
9 14 16
|
syl2anc |
|
18 |
1 7 2 9 15 17
|
sylow1 |
|
19 |
2
|
adantr |
|
20 |
5
|
adantr |
|
21 |
|
simprl |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
23
|
slwpgp |
|
25 |
3 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
|
simprr |
|
28 |
|
eqid |
|
29 |
1 19 20 21 22 26 27 28
|
sylow2b |
|
30 |
|
simprr |
|
31 |
3
|
ad2antrr |
|
32 |
31 8
|
syl |
|
33 |
15
|
ad2antrr |
|
34 |
21
|
adantr |
|
35 |
|
simprl |
|
36 |
|
eqid |
|
37 |
1 22 28 36
|
conjsubg |
|
38 |
34 35 37
|
syl2anc |
|
39 |
|
eqid |
|
40 |
39
|
subgbas |
|
41 |
38 40
|
syl |
|
42 |
41
|
fveq2d |
|
43 |
1 22 28 36
|
conjsubgen |
|
44 |
34 35 43
|
syl2anc |
|
45 |
2
|
ad2antrr |
|
46 |
1
|
subgss |
|
47 |
34 46
|
syl |
|
48 |
45 47
|
ssfid |
|
49 |
1
|
subgss |
|
50 |
38 49
|
syl |
|
51 |
45 50
|
ssfid |
|
52 |
|
hashen |
|
53 |
48 51 52
|
syl2anc |
|
54 |
44 53
|
mpbird |
|
55 |
|
simplrr |
|
56 |
54 55
|
eqtr3d |
|
57 |
42 56
|
eqtr3d |
|
58 |
|
oveq2 |
|
59 |
58
|
rspceeqv |
|
60 |
33 57 59
|
syl2anc |
|
61 |
39
|
subggrp |
|
62 |
38 61
|
syl |
|
63 |
41 51
|
eqeltrrd |
|
64 |
|
eqid |
|
65 |
64
|
pgpfi |
|
66 |
62 63 65
|
syl2anc |
|
67 |
32 60 66
|
mpbir2and |
|
68 |
39
|
slwispgp |
|
69 |
31 38 68
|
syl2anc |
|
70 |
30 67 69
|
mpbi2and |
|
71 |
70
|
fveq2d |
|
72 |
71 56
|
eqtrd |
|
73 |
29 72
|
rexlimddv |
|
74 |
18 73
|
rexlimddv |
|