Metamath Proof Explorer


Theorem slwhash

Description: A sylow subgroup has cardinality equal to the maximum power of P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses fislw.1 X = Base G
slwhash.3 φ X Fin
slwhash.4 φ H P pSyl G
Assertion slwhash φ H = P P pCnt X

Proof

Step Hyp Ref Expression
1 fislw.1 X = Base G
2 slwhash.3 φ X Fin
3 slwhash.4 φ H P pSyl G
4 slwsubg H P pSyl G H SubGrp G
5 3 4 syl φ H SubGrp G
6 subgrcl H SubGrp G G Grp
7 5 6 syl φ G Grp
8 slwprm H P pSyl G P
9 3 8 syl φ P
10 1 grpbn0 G Grp X
11 7 10 syl φ X
12 hashnncl X Fin X X
13 2 12 syl φ X X
14 11 13 mpbird φ X
15 9 14 pccld φ P pCnt X 0
16 pcdvds P X P P pCnt X X
17 9 14 16 syl2anc φ P P pCnt X X
18 1 7 2 9 15 17 sylow1 φ k SubGrp G k = P P pCnt X
19 2 adantr φ k SubGrp G k = P P pCnt X X Fin
20 5 adantr φ k SubGrp G k = P P pCnt X H SubGrp G
21 simprl φ k SubGrp G k = P P pCnt X k SubGrp G
22 eqid + G = + G
23 eqid G 𝑠 H = G 𝑠 H
24 23 slwpgp H P pSyl G P pGrp G 𝑠 H
25 3 24 syl φ P pGrp G 𝑠 H
26 25 adantr φ k SubGrp G k = P P pCnt X P pGrp G 𝑠 H
27 simprr φ k SubGrp G k = P P pCnt X k = P P pCnt X
28 eqid - G = - G
29 1 19 20 21 22 26 27 28 sylow2b φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g
30 simprr φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g H ran x k g + G x - G g
31 3 ad2antrr φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g H P pSyl G
32 31 8 syl φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g P
33 15 ad2antrr φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g P pCnt X 0
34 21 adantr φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k SubGrp G
35 simprl φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g g X
36 eqid x k g + G x - G g = x k g + G x - G g
37 1 22 28 36 conjsubg k SubGrp G g X ran x k g + G x - G g SubGrp G
38 34 35 37 syl2anc φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g ran x k g + G x - G g SubGrp G
39 eqid G 𝑠 ran x k g + G x - G g = G 𝑠 ran x k g + G x - G g
40 39 subgbas ran x k g + G x - G g SubGrp G ran x k g + G x - G g = Base G 𝑠 ran x k g + G x - G g
41 38 40 syl φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g ran x k g + G x - G g = Base G 𝑠 ran x k g + G x - G g
42 41 fveq2d φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g ran x k g + G x - G g = Base G 𝑠 ran x k g + G x - G g
43 1 22 28 36 conjsubgen k SubGrp G g X k ran x k g + G x - G g
44 34 35 43 syl2anc φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k ran x k g + G x - G g
45 2 ad2antrr φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g X Fin
46 1 subgss k SubGrp G k X
47 34 46 syl φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k X
48 45 47 ssfid φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k Fin
49 1 subgss ran x k g + G x - G g SubGrp G ran x k g + G x - G g X
50 38 49 syl φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g ran x k g + G x - G g X
51 45 50 ssfid φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g ran x k g + G x - G g Fin
52 hashen k Fin ran x k g + G x - G g Fin k = ran x k g + G x - G g k ran x k g + G x - G g
53 48 51 52 syl2anc φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k = ran x k g + G x - G g k ran x k g + G x - G g
54 44 53 mpbird φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k = ran x k g + G x - G g
55 simplrr φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g k = P P pCnt X
56 54 55 eqtr3d φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g ran x k g + G x - G g = P P pCnt X
57 42 56 eqtr3d φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g Base G 𝑠 ran x k g + G x - G g = P P pCnt X
58 oveq2 n = P pCnt X P n = P P pCnt X
59 58 rspceeqv P pCnt X 0 Base G 𝑠 ran x k g + G x - G g = P P pCnt X n 0 Base G 𝑠 ran x k g + G x - G g = P n
60 33 57 59 syl2anc φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g n 0 Base G 𝑠 ran x k g + G x - G g = P n
61 39 subggrp ran x k g + G x - G g SubGrp G G 𝑠 ran x k g + G x - G g Grp
62 38 61 syl φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g G 𝑠 ran x k g + G x - G g Grp
63 41 51 eqeltrrd φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g Base G 𝑠 ran x k g + G x - G g Fin
64 eqid Base G 𝑠 ran x k g + G x - G g = Base G 𝑠 ran x k g + G x - G g
65 64 pgpfi G 𝑠 ran x k g + G x - G g Grp Base G 𝑠 ran x k g + G x - G g Fin P pGrp G 𝑠 ran x k g + G x - G g P n 0 Base G 𝑠 ran x k g + G x - G g = P n
66 62 63 65 syl2anc φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g P pGrp G 𝑠 ran x k g + G x - G g P n 0 Base G 𝑠 ran x k g + G x - G g = P n
67 32 60 66 mpbir2and φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g P pGrp G 𝑠 ran x k g + G x - G g
68 39 slwispgp H P pSyl G ran x k g + G x - G g SubGrp G H ran x k g + G x - G g P pGrp G 𝑠 ran x k g + G x - G g H = ran x k g + G x - G g
69 31 38 68 syl2anc φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g H ran x k g + G x - G g P pGrp G 𝑠 ran x k g + G x - G g H = ran x k g + G x - G g
70 30 67 69 mpbi2and φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g H = ran x k g + G x - G g
71 70 fveq2d φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g H = ran x k g + G x - G g
72 71 56 eqtrd φ k SubGrp G k = P P pCnt X g X H ran x k g + G x - G g H = P P pCnt X
73 29 72 rexlimddv φ k SubGrp G k = P P pCnt X H = P P pCnt X
74 18 73 rexlimddv φ H = P P pCnt X