| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fislw.1 |
|
| 2 |
|
slwhash.3 |
|
| 3 |
|
slwhash.4 |
|
| 4 |
|
slwsubg |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
subgrcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
|
slwprm |
|
| 9 |
3 8
|
syl |
|
| 10 |
1
|
grpbn0 |
|
| 11 |
7 10
|
syl |
|
| 12 |
|
hashnncl |
|
| 13 |
2 12
|
syl |
|
| 14 |
11 13
|
mpbird |
|
| 15 |
9 14
|
pccld |
|
| 16 |
|
pcdvds |
|
| 17 |
9 14 16
|
syl2anc |
|
| 18 |
1 7 2 9 15 17
|
sylow1 |
|
| 19 |
2
|
adantr |
|
| 20 |
5
|
adantr |
|
| 21 |
|
simprl |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
23
|
slwpgp |
|
| 25 |
3 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simprr |
|
| 28 |
|
eqid |
|
| 29 |
1 19 20 21 22 26 27 28
|
sylow2b |
|
| 30 |
|
simprr |
|
| 31 |
3
|
ad2antrr |
|
| 32 |
31 8
|
syl |
|
| 33 |
15
|
ad2antrr |
|
| 34 |
21
|
adantr |
|
| 35 |
|
simprl |
|
| 36 |
|
eqid |
|
| 37 |
1 22 28 36
|
conjsubg |
|
| 38 |
34 35 37
|
syl2anc |
|
| 39 |
|
eqid |
|
| 40 |
39
|
subgbas |
|
| 41 |
38 40
|
syl |
|
| 42 |
41
|
fveq2d |
|
| 43 |
1 22 28 36
|
conjsubgen |
|
| 44 |
34 35 43
|
syl2anc |
|
| 45 |
2
|
ad2antrr |
|
| 46 |
1
|
subgss |
|
| 47 |
34 46
|
syl |
|
| 48 |
45 47
|
ssfid |
|
| 49 |
1
|
subgss |
|
| 50 |
38 49
|
syl |
|
| 51 |
45 50
|
ssfid |
|
| 52 |
|
hashen |
|
| 53 |
48 51 52
|
syl2anc |
|
| 54 |
44 53
|
mpbird |
|
| 55 |
|
simplrr |
|
| 56 |
54 55
|
eqtr3d |
|
| 57 |
42 56
|
eqtr3d |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
rspceeqv |
|
| 60 |
33 57 59
|
syl2anc |
|
| 61 |
39
|
subggrp |
|
| 62 |
38 61
|
syl |
|
| 63 |
41 51
|
eqeltrrd |
|
| 64 |
|
eqid |
|
| 65 |
64
|
pgpfi |
|
| 66 |
62 63 65
|
syl2anc |
|
| 67 |
32 60 66
|
mpbir2and |
|
| 68 |
39
|
slwispgp |
|
| 69 |
31 38 68
|
syl2anc |
|
| 70 |
30 67 69
|
mpbi2and |
|
| 71 |
70
|
fveq2d |
|
| 72 |
71 56
|
eqtrd |
|
| 73 |
29 72
|
rexlimddv |
|
| 74 |
18 73
|
rexlimddv |
|