Metamath Proof Explorer


Theorem slwn0

Description: Every finite group contains a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwn0.1 X = Base G
Assertion slwn0 G Grp X Fin P P pSyl G

Proof

Step Hyp Ref Expression
1 slwn0.1 X = Base G
2 eqid 0 G = 0 G
3 2 0subg G Grp 0 G SubGrp G
4 3 3ad2ant1 G Grp X Fin P 0 G SubGrp G
5 simp2 G Grp X Fin P X Fin
6 2 pgp0 G Grp P P pGrp G 𝑠 0 G
7 6 3adant2 G Grp X Fin P P pGrp G 𝑠 0 G
8 eqid G 𝑠 0 G = G 𝑠 0 G
9 eqid x y SubGrp G | P pGrp G 𝑠 y 0 G y x = x y SubGrp G | P pGrp G 𝑠 y 0 G y x
10 1 8 9 pgpssslw 0 G SubGrp G X Fin P pGrp G 𝑠 0 G z P pSyl G 0 G z
11 4 5 7 10 syl3anc G Grp X Fin P z P pSyl G 0 G z
12 rexn0 z P pSyl G 0 G z P pSyl G
13 11 12 syl G Grp X Fin P P pSyl G