Metamath Proof Explorer


Theorem slwpgp

Description: A Sylow P -subgroup is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwpgp.1 S = G 𝑠 H
Assertion slwpgp H P pSyl G P pGrp S

Proof

Step Hyp Ref Expression
1 slwpgp.1 S = G 𝑠 H
2 eqid H = H
3 slwsubg H P pSyl G H SubGrp G
4 1 slwispgp H P pSyl G H SubGrp G H H P pGrp S H = H
5 3 4 mpdan H P pSyl G H H P pGrp S H = H
6 2 5 mpbiri H P pSyl G H H P pGrp S
7 6 simprd H P pSyl G P pGrp S