Metamath Proof Explorer


Theorem smadiadetglem2

Description: Lemma 2 for smadiadetg . (Contributed by AV, 14-Feb-2019)

Ref Expression
Hypotheses smadiadet.a A = N Mat R
smadiadet.b B = Base A
smadiadet.r R CRing
smadiadet.d D = N maDet R
smadiadet.h E = N K maDet R
smadiadetg.x · ˙ = R
Assertion smadiadetglem2 M B K N S Base R K M N matRRep R S K K × N = K × N × S · ˙ f K N minMatR1 R M K K × N

Proof

Step Hyp Ref Expression
1 smadiadet.a A = N Mat R
2 smadiadet.b B = Base A
3 smadiadet.r R CRing
4 smadiadet.d D = N maDet R
5 smadiadet.h E = N K maDet R
6 smadiadetg.x · ˙ = R
7 snex K V
8 7 a1i M B K N S Base R K V
9 1 2 matrcl M B N Fin R V
10 elex N Fin N V
11 10 adantr N Fin R V N V
12 9 11 syl M B N V
13 12 3ad2ant1 M B K N S Base R N V
14 simp13 M B K N S Base R i K j N S Base R
15 crngring R CRing R Ring
16 3 15 mp1i M B K N S Base R i K j N R Ring
17 eqid Base R = Base R
18 eqid 1 R = 1 R
19 17 18 ringidcl R Ring 1 R Base R
20 eqid 0 R = 0 R
21 17 20 ring0cl R Ring 0 R Base R
22 19 21 ifcld R Ring if j = K 1 R 0 R Base R
23 16 22 syl M B K N S Base R i K j N if j = K 1 R 0 R Base R
24 fconstmpo K × N × S = i K , j N S
25 24 a1i M B K N S Base R K × N × S = i K , j N S
26 eqidd M B K N S Base R i K , j N if j = K 1 R 0 R = i K , j N if j = K 1 R 0 R
27 8 13 14 23 25 26 offval22 M B K N S Base R K × N × S · ˙ f i K , j N if j = K 1 R 0 R = i K , j N S · ˙ if j = K 1 R 0 R
28 3 15 mp1i S Base R R Ring
29 17 6 18 ringridm R Ring S Base R S · ˙ 1 R = S
30 28 29 mpancom S Base R S · ˙ 1 R = S
31 30 3ad2ant3 M B K N S Base R S · ˙ 1 R = S
32 31 ad2antrl j = K M B K N S Base R j N S · ˙ 1 R = S
33 iftrue j = K if j = K 1 R 0 R = 1 R
34 33 adantr j = K M B K N S Base R j N if j = K 1 R 0 R = 1 R
35 34 oveq2d j = K M B K N S Base R j N S · ˙ if j = K 1 R 0 R = S · ˙ 1 R
36 iftrue j = K if j = K S 0 R = S
37 36 adantr j = K M B K N S Base R j N if j = K S 0 R = S
38 32 35 37 3eqtr4d j = K M B K N S Base R j N S · ˙ if j = K 1 R 0 R = if j = K S 0 R
39 17 6 20 ringrz R Ring S Base R S · ˙ 0 R = 0 R
40 28 39 mpancom S Base R S · ˙ 0 R = 0 R
41 40 3ad2ant3 M B K N S Base R S · ˙ 0 R = 0 R
42 41 ad2antrl ¬ j = K M B K N S Base R j N S · ˙ 0 R = 0 R
43 iffalse ¬ j = K if j = K 1 R 0 R = 0 R
44 43 oveq2d ¬ j = K S · ˙ if j = K 1 R 0 R = S · ˙ 0 R
45 44 adantr ¬ j = K M B K N S Base R j N S · ˙ if j = K 1 R 0 R = S · ˙ 0 R
46 iffalse ¬ j = K if j = K S 0 R = 0 R
47 46 adantr ¬ j = K M B K N S Base R j N if j = K S 0 R = 0 R
48 42 45 47 3eqtr4d ¬ j = K M B K N S Base R j N S · ˙ if j = K 1 R 0 R = if j = K S 0 R
49 38 48 pm2.61ian M B K N S Base R j N S · ˙ if j = K 1 R 0 R = if j = K S 0 R
50 49 3adant2 M B K N S Base R i K j N S · ˙ if j = K 1 R 0 R = if j = K S 0 R
51 50 mpoeq3dva M B K N S Base R i K , j N S · ˙ if j = K 1 R 0 R = i K , j N if j = K S 0 R
52 27 51 eqtrd M B K N S Base R K × N × S · ˙ f i K , j N if j = K 1 R 0 R = i K , j N if j = K S 0 R
53 simp2 M B K N S Base R K N
54 eqid N minMatR1 R = N minMatR1 R
55 1 2 54 18 20 minmar1val M B K N K N K N minMatR1 R M K = i N , j N if i = K if j = K 1 R 0 R i M j
56 53 55 syld3an3 M B K N S Base R K N minMatR1 R M K = i N , j N if i = K if j = K 1 R 0 R i M j
57 56 reseq1d M B K N S Base R K N minMatR1 R M K K × N = i N , j N if i = K if j = K 1 R 0 R i M j K × N
58 snssi K N K N
59 58 3ad2ant2 M B K N S Base R K N
60 ssid N N
61 resmpo K N N N i N , j N if i = K if j = K 1 R 0 R i M j K × N = i K , j N if i = K if j = K 1 R 0 R i M j
62 59 60 61 sylancl M B K N S Base R i N , j N if i = K if j = K 1 R 0 R i M j K × N = i K , j N if i = K if j = K 1 R 0 R i M j
63 mposnif i K , j N if i = K if j = K 1 R 0 R i M j = i K , j N if j = K 1 R 0 R
64 63 a1i M B K N S Base R i K , j N if i = K if j = K 1 R 0 R i M j = i K , j N if j = K 1 R 0 R
65 57 62 64 3eqtrd M B K N S Base R K N minMatR1 R M K K × N = i K , j N if j = K 1 R 0 R
66 65 oveq2d M B K N S Base R K × N × S · ˙ f K N minMatR1 R M K K × N = K × N × S · ˙ f i K , j N if j = K 1 R 0 R
67 3simpb M B K N S Base R M B S Base R
68 eqid N matRRep R = N matRRep R
69 1 2 68 20 marrepval M B S Base R K N K N K M N matRRep R S K = i N , j N if i = K if j = K S 0 R i M j
70 67 53 53 69 syl12anc M B K N S Base R K M N matRRep R S K = i N , j N if i = K if j = K S 0 R i M j
71 70 reseq1d M B K N S Base R K M N matRRep R S K K × N = i N , j N if i = K if j = K S 0 R i M j K × N
72 resmpo K N N N i N , j N if i = K if j = K S 0 R i M j K × N = i K , j N if i = K if j = K S 0 R i M j
73 59 60 72 sylancl M B K N S Base R i N , j N if i = K if j = K S 0 R i M j K × N = i K , j N if i = K if j = K S 0 R i M j
74 mposnif i K , j N if i = K if j = K S 0 R i M j = i K , j N if j = K S 0 R
75 74 a1i M B K N S Base R i K , j N if i = K if j = K S 0 R i M j = i K , j N if j = K S 0 R
76 71 73 75 3eqtrd M B K N S Base R K M N matRRep R S K K × N = i K , j N if j = K S 0 R
77 52 66 76 3eqtr4rd M B K N S Base R K M N matRRep R S K K × N = K × N × S · ˙ f K N minMatR1 R M K K × N