Metamath Proof Explorer


Theorem smatvscl

Description: Closure of the scalar multiplication in the ring of scalar matrices. ( matvscl analog.) (Contributed by AV, 24-Dec-2019)

Ref Expression
Hypotheses smatvscl.k K = Base R
smatvscl.a A = N Mat R
smatvscl.s S = N ScMat R
smatvscl.t ˙ = A
Assertion smatvscl N Fin R Ring C K X S C ˙ X S

Proof

Step Hyp Ref Expression
1 smatvscl.k K = Base R
2 smatvscl.a A = N Mat R
3 smatvscl.s S = N ScMat R
4 smatvscl.t ˙ = A
5 eqid Base R = Base R
6 eqid Base A = Base A
7 eqid 1 A = 1 A
8 5 2 6 7 4 3 scmatel N Fin R Ring X S X Base A c Base R X = c ˙ 1 A
9 oveq2 X = c ˙ 1 A C ˙ X = C ˙ c ˙ 1 A
10 9 adantl N Fin R Ring C K X Base A c Base R X = c ˙ 1 A C ˙ X = C ˙ c ˙ 1 A
11 2 matlmod N Fin R Ring A LMod
12 11 ad3antrrr N Fin R Ring C K X Base A c Base R A LMod
13 2 matsca2 N Fin R Ring R = Scalar A
14 13 fveq2d N Fin R Ring Base R = Base Scalar A
15 1 14 syl5eq N Fin R Ring K = Base Scalar A
16 15 eleq2d N Fin R Ring C K C Base Scalar A
17 16 biimpa N Fin R Ring C K C Base Scalar A
18 17 ad2antrr N Fin R Ring C K X Base A c Base R C Base Scalar A
19 13 ad2antrr N Fin R Ring C K X Base A R = Scalar A
20 19 fveq2d N Fin R Ring C K X Base A Base R = Base Scalar A
21 20 eleq2d N Fin R Ring C K X Base A c Base R c Base Scalar A
22 21 biimpa N Fin R Ring C K X Base A c Base R c Base Scalar A
23 2 matring N Fin R Ring A Ring
24 6 7 ringidcl A Ring 1 A Base A
25 23 24 syl N Fin R Ring 1 A Base A
26 25 ad3antrrr N Fin R Ring C K X Base A c Base R 1 A Base A
27 eqid Scalar A = Scalar A
28 eqid Base Scalar A = Base Scalar A
29 eqid Scalar A = Scalar A
30 6 27 4 28 29 lmodvsass A LMod C Base Scalar A c Base Scalar A 1 A Base A C Scalar A c ˙ 1 A = C ˙ c ˙ 1 A
31 12 18 22 26 30 syl13anc N Fin R Ring C K X Base A c Base R C Scalar A c ˙ 1 A = C ˙ c ˙ 1 A
32 31 eqcomd N Fin R Ring C K X Base A c Base R C ˙ c ˙ 1 A = C Scalar A c ˙ 1 A
33 simplll N Fin R Ring C K X Base A c Base R N Fin R Ring
34 13 adantr N Fin R Ring C K R = Scalar A
35 34 eqcomd N Fin R Ring C K Scalar A = R
36 35 ad2antrr N Fin R Ring C K X Base A c Base R Scalar A = R
37 36 fveq2d N Fin R Ring C K X Base A c Base R Scalar A = R
38 37 oveqd N Fin R Ring C K X Base A c Base R C Scalar A c = C R c
39 simp-4r N Fin R Ring C K X Base A c Base R R Ring
40 simpllr N Fin R Ring C K X Base A c Base R C K
41 1 eqcomi Base R = K
42 41 eleq2i c Base R c K
43 42 biimpi c Base R c K
44 43 adantl N Fin R Ring C K X Base A c Base R c K
45 eqid R = R
46 1 45 ringcl R Ring C K c K C R c K
47 39 40 44 46 syl3anc N Fin R Ring C K X Base A c Base R C R c K
48 38 47 eqeltrd N Fin R Ring C K X Base A c Base R C Scalar A c K
49 1 2 6 4 matvscl N Fin R Ring C Scalar A c K 1 A Base A C Scalar A c ˙ 1 A Base A
50 33 48 26 49 syl12anc N Fin R Ring C K X Base A c Base R C Scalar A c ˙ 1 A Base A
51 oveq1 C Scalar A c = e C Scalar A c ˙ 1 A = e ˙ 1 A
52 51 eqcoms e = C Scalar A c C Scalar A c ˙ 1 A = e ˙ 1 A
53 52 adantl N Fin R Ring C K X Base A c Base R e = C Scalar A c C Scalar A c ˙ 1 A = e ˙ 1 A
54 48 53 rspcedeq2vd N Fin R Ring C K X Base A c Base R e K C Scalar A c ˙ 1 A = e ˙ 1 A
55 1 2 6 7 4 3 scmatel N Fin R Ring C Scalar A c ˙ 1 A S C Scalar A c ˙ 1 A Base A e K C Scalar A c ˙ 1 A = e ˙ 1 A
56 55 ad3antrrr N Fin R Ring C K X Base A c Base R C Scalar A c ˙ 1 A S C Scalar A c ˙ 1 A Base A e K C Scalar A c ˙ 1 A = e ˙ 1 A
57 50 54 56 mpbir2and N Fin R Ring C K X Base A c Base R C Scalar A c ˙ 1 A S
58 32 57 eqeltrd N Fin R Ring C K X Base A c Base R C ˙ c ˙ 1 A S
59 58 adantr N Fin R Ring C K X Base A c Base R X = c ˙ 1 A C ˙ c ˙ 1 A S
60 10 59 eqeltrd N Fin R Ring C K X Base A c Base R X = c ˙ 1 A C ˙ X S
61 60 rexlimdva2 N Fin R Ring C K X Base A c Base R X = c ˙ 1 A C ˙ X S
62 61 expimpd N Fin R Ring C K X Base A c Base R X = c ˙ 1 A C ˙ X S
63 62 ex N Fin R Ring C K X Base A c Base R X = c ˙ 1 A C ˙ X S
64 63 com23 N Fin R Ring X Base A c Base R X = c ˙ 1 A C K C ˙ X S
65 8 64 sylbid N Fin R Ring X S C K C ˙ X S
66 65 com23 N Fin R Ring C K X S C ˙ X S
67 66 imp32 N Fin R Ring C K X S C ˙ X S