Metamath Proof Explorer


Theorem smgrpassOLD

Description: Obsolete version of sgrpass as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis smgrpassOLD.1 X = dom dom G
Assertion smgrpassOLD G SemiGrp x X y X z X x G y G z = x G y G z

Proof

Step Hyp Ref Expression
1 smgrpassOLD.1 X = dom dom G
2 1 issmgrpOLD G SemiGrp G SemiGrp G : X × X X x X y X z X x G y G z = x G y G z
3 simpr G : X × X X x X y X z X x G y G z = x G y G z x X y X z X x G y G z = x G y G z
4 2 3 syl6bi G SemiGrp G SemiGrp x X y X z X x G y G z = x G y G z
5 4 pm2.43i G SemiGrp x X y X z X x G y G z = x G y G z