Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Groups and related structures
smgrpmgm
Next ⟩
smgrpassOLD
Metamath Proof Explorer
Ascii
Unicode
Theorem
smgrpmgm
Description:
A semigroup is a magma.
(Contributed by
FL
, 2-Nov-2009)
(New usage is discouraged.)
Ref
Expression
Hypothesis
smgrpmgm.1
⊢
X
=
dom
⁡
dom
⁡
G
Assertion
smgrpmgm
⊢
G
∈
SemiGrp
→
G
:
X
×
X
⟶
X
Proof
Step
Hyp
Ref
Expression
1
smgrpmgm.1
⊢
X
=
dom
⁡
dom
⁡
G
2
1
issmgrpOLD
⊢
G
∈
SemiGrp
→
G
∈
SemiGrp
↔
G
:
X
×
X
⟶
X
∧
∀
x
∈
X
∀
y
∈
X
∀
z
∈
X
x
G
y
G
z
=
x
G
y
G
z
3
simpl
⊢
G
:
X
×
X
⟶
X
∧
∀
x
∈
X
∀
y
∈
X
∀
z
∈
X
x
G
y
G
z
=
x
G
y
G
z
→
G
:
X
×
X
⟶
X
4
2
3
biimtrdi
⊢
G
∈
SemiGrp
→
G
∈
SemiGrp
→
G
:
X
×
X
⟶
X
5
4
pm2.43i
⊢
G
∈
SemiGrp
→
G
:
X
×
X
⟶
X