Metamath Proof Explorer


Theorem smgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Hypothesis smgrpmgm.1 X = dom dom G
Assertion smgrpmgm G SemiGrp G : X × X X

Proof

Step Hyp Ref Expression
1 smgrpmgm.1 X = dom dom G
2 1 issmgrpOLD G SemiGrp G SemiGrp G : X × X X x X y X z X x G y G z = x G y G z
3 simpl G : X × X X x X y X z X x G y G z = x G y G z G : X × X X
4 2 3 syl6bi G SemiGrp G SemiGrp G : X × X X
5 4 pm2.43i G SemiGrp G : X × X X