Metamath Proof Explorer


Theorem smndex1bas

Description: The base set of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 12-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
smndex1mgm.b B = I n 0 ..^ N G n
smndex1mgm.s S = M 𝑠 B
Assertion smndex1bas Base S = B

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 smndex1mgm.b B = I n 0 ..^ N G n
6 smndex1mgm.s S = M 𝑠 B
7 1 2 3 4 5 smndex1basss B Base M
8 dfss B Base M B = B Base M
9 7 8 mpbi B = B Base M
10 snex I V
11 ovex 0 ..^ N V
12 snex G n V
13 11 12 iunex n 0 ..^ N G n V
14 10 13 unex I n 0 ..^ N G n V
15 5 14 eqeltri B V
16 eqid Base M = Base M
17 6 16 ressbas B V B Base M = Base S
18 15 17 ax-mp B Base M = Base S
19 9 18 eqtr2i Base S = B