Metamath Proof Explorer


Theorem smndex1basss

Description: The modulo function I and the constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
smndex1mgm.b B = I n 0 ..^ N G n
Assertion smndex1basss B Base M

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 smndex1mgm.b B = I n 0 ..^ N G n
6 5 eleq2i b B b I n 0 ..^ N G n
7 fveq2 n = k G n = G k
8 7 sneqd n = k G n = G k
9 8 cbviunv n 0 ..^ N G n = k 0 ..^ N G k
10 9 uneq2i I n 0 ..^ N G n = I k 0 ..^ N G k
11 10 eleq2i b I n 0 ..^ N G n b I k 0 ..^ N G k
12 6 11 bitri b B b I k 0 ..^ N G k
13 elun b I k 0 ..^ N G k b I b k 0 ..^ N G k
14 velsn b I b = I
15 eliun b k 0 ..^ N G k k 0 ..^ N b G k
16 14 15 orbi12i b I b k 0 ..^ N G k b = I k 0 ..^ N b G k
17 12 13 16 3bitri b B b = I k 0 ..^ N b G k
18 1 2 3 smndex1ibas I Base M
19 eleq1 b = I b Base M I Base M
20 18 19 mpbiri b = I b Base M
21 1 2 3 4 smndex1gbas k 0 ..^ N G k Base M
22 21 adantr k 0 ..^ N b G k G k Base M
23 elsni b G k b = G k
24 23 eleq1d b G k b Base M G k Base M
25 24 adantl k 0 ..^ N b G k b Base M G k Base M
26 22 25 mpbird k 0 ..^ N b G k b Base M
27 26 rexlimiva k 0 ..^ N b G k b Base M
28 20 27 jaoi b = I k 0 ..^ N b G k b Base M
29 17 28 sylbi b B b Base M
30 29 ssriv B Base M