Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Free monoids
Monoid of endofunctions
smndex1ibas
Next ⟩
smndex1iidm
Metamath Proof Explorer
Ascii
Unicode
Theorem
smndex1ibas
Description:
The modulo function
I
is an endofunction on
NN0
.
(Contributed by
AV
, 12-Feb-2024)
Ref
Expression
Hypotheses
smndex1ibas.m
⊢
M
=
EndoFMnd
⁡
ℕ
0
smndex1ibas.n
⊢
N
∈
ℕ
smndex1ibas.i
⊢
I
=
x
∈
ℕ
0
⟼
x
mod
N
Assertion
smndex1ibas
⊢
I
∈
Base
M
Proof
Step
Hyp
Ref
Expression
1
smndex1ibas.m
⊢
M
=
EndoFMnd
⁡
ℕ
0
2
smndex1ibas.n
⊢
N
∈
ℕ
3
smndex1ibas.i
⊢
I
=
x
∈
ℕ
0
⟼
x
mod
N
4
eqid
⊢
x
∈
ℕ
0
⟼
x
mod
N
=
x
∈
ℕ
0
⟼
x
mod
N
5
nn0z
⊢
x
∈
ℕ
0
→
x
∈
ℤ
6
2
a1i
⊢
x
∈
ℕ
0
→
N
∈
ℕ
7
5
6
zmodcld
⊢
x
∈
ℕ
0
→
x
mod
N
∈
ℕ
0
8
4
7
fmpti
⊢
x
∈
ℕ
0
⟼
x
mod
N
:
ℕ
0
⟶
ℕ
0
9
nn0ex
⊢
ℕ
0
∈
V
10
9
9
elmap
⊢
x
∈
ℕ
0
⟼
x
mod
N
∈
ℕ
0
ℕ
0
↔
x
∈
ℕ
0
⟼
x
mod
N
:
ℕ
0
⟶
ℕ
0
11
8
10
mpbir
⊢
x
∈
ℕ
0
⟼
x
mod
N
∈
ℕ
0
ℕ
0
12
eqid
⊢
Base
M
=
Base
M
13
1
12
efmndbas
⊢
Base
M
=
ℕ
0
ℕ
0
14
11
3
13
3eltr4i
⊢
I
∈
Base
M