Metamath Proof Explorer


Theorem smndex1id

Description: The modulo function I is the identity of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 16-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
smndex1mgm.b B = I n 0 ..^ N G n
smndex1mgm.s S = M 𝑠 B
Assertion smndex1id I = 0 S

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 smndex1mgm.b B = I n 0 ..^ N G n
6 smndex1mgm.s S = M 𝑠 B
7 nn0ex 0 V
8 7 mptex x 0 x mod N V
9 3 8 eqeltri I V
10 9 snid I I
11 elun1 I I I I n 0 ..^ N G n
12 10 11 ax-mp I I n 0 ..^ N G n
13 12 5 eleqtrri I B
14 1 2 3 4 5 6 smndex1bas Base S = B
15 14 eqcomi B = Base S
16 15 a1i I B B = Base S
17 snex I V
18 ovex 0 ..^ N V
19 snex G n V
20 18 19 iunex n 0 ..^ N G n V
21 17 20 unex I n 0 ..^ N G n V
22 5 21 eqeltri B V
23 eqid + M = + M
24 6 23 ressplusg B V + M = + S
25 22 24 mp1i I B + M = + S
26 id I B I B
27 1 2 3 smndex1ibas I Base M
28 27 a1i I B I Base M
29 1 2 3 4 5 smndex1basss B Base M
30 29 sseli a B a Base M
31 eqid Base M = Base M
32 1 31 23 efmndov I Base M a Base M I + M a = I a
33 28 30 32 syl2an I B a B I + M a = I a
34 1 2 3 4 5 6 smndex1mndlem a B I a = a a I = a
35 34 simpld a B I a = a
36 35 adantl I B a B I a = a
37 33 36 eqtrd I B a B I + M a = a
38 1 31 23 efmndov a Base M I Base M a + M I = a I
39 30 28 38 syl2anr I B a B a + M I = a I
40 34 simprd a B a I = a
41 40 adantl I B a B a I = a
42 39 41 eqtrd I B a B a + M I = a
43 16 25 26 37 42 grpidd I B I = 0 S
44 13 43 ax-mp I = 0 S