Metamath Proof Explorer


Theorem smndex1igid

Description: The composition of the modulo function I and a constant function ( GK ) results in ( GK ) itself. (Contributed by AV, 14-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
Assertion smndex1igid K 0 ..^ N I G K = G K

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 fconstmpt 0 × K = x 0 K
6 5 eqcomi x 0 K = 0 × K
7 6 a1i K 0 ..^ N x 0 K = 0 × K
8 7 coeq2d K 0 ..^ N I x 0 K = I 0 × K
9 simpl n = K x 0 n = K
10 9 mpteq2dva n = K x 0 n = x 0 K
11 nn0ex 0 V
12 11 mptex x 0 K V
13 10 4 12 fvmpt K 0 ..^ N G K = x 0 K
14 13 coeq2d K 0 ..^ N I G K = I x 0 K
15 oveq1 x = K x mod N = K mod N
16 zmodidfzoimp K 0 ..^ N K mod N = K
17 15 16 sylan9eqr K 0 ..^ N x = K x mod N = K
18 elfzonn0 K 0 ..^ N K 0
19 3 17 18 18 fvmptd2 K 0 ..^ N I K = K
20 19 eqcomd K 0 ..^ N K = I K
21 20 sneqd K 0 ..^ N K = I K
22 21 xpeq2d K 0 ..^ N 0 × K = 0 × I K
23 13 6 eqtrdi K 0 ..^ N G K = 0 × K
24 ovex x mod N V
25 24 3 fnmpti I Fn 0
26 fcoconst I Fn 0 K 0 I 0 × K = 0 × I K
27 25 18 26 sylancr K 0 ..^ N I 0 × K = 0 × I K
28 22 23 27 3eqtr4d K 0 ..^ N G K = I 0 × K
29 8 14 28 3eqtr4d K 0 ..^ N I G K = G K