Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a monoid. (Contributed by AV, 16-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smndex1ibas.m | No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |- | |
smndex1ibas.n | |
||
smndex1ibas.i | |
||
smndex1ibas.g | |
||
smndex1mgm.b | |
||
smndex1mgm.s | |
||
Assertion | smndex1mnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.m | Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |- | |
2 | smndex1ibas.n | |
|
3 | smndex1ibas.i | |
|
4 | smndex1ibas.g | |
|
5 | smndex1mgm.b | |
|
6 | smndex1mgm.s | |
|
7 | 1 2 3 4 5 6 | smndex1sgrp | Could not format S e. Smgrp : No typesetting found for |- S e. Smgrp with typecode |- |
8 | nn0ex | |
|
9 | 8 | mptex | |
10 | 3 9 | eqeltri | |
11 | 10 | snid | |
12 | elun1 | |
|
13 | 11 12 | ax-mp | |
14 | 13 5 | eleqtrri | |
15 | id | |
|
16 | coeq1 | |
|
17 | 16 | eqeq1d | |
18 | coeq2 | |
|
19 | 18 | eqeq1d | |
20 | 17 19 | anbi12d | |
21 | 20 | ralbidv | |
22 | 21 | adantl | |
23 | 1 2 3 4 5 6 | smndex1mndlem | |
24 | 23 | rgen | |
25 | 24 | a1i | |
26 | 15 22 25 | rspcedvd | |
27 | 14 26 | ax-mp | |
28 | 1 2 3 4 5 | smndex1basss | |
29 | ssel | |
|
30 | ssel | |
|
31 | 29 30 | anim12d | |
32 | 28 31 | ax-mp | |
33 | eqid | |
|
34 | snex | |
|
35 | ovex | |
|
36 | snex | |
|
37 | 35 36 | iunex | |
38 | 34 37 | unex | |
39 | 5 38 | eqeltri | |
40 | eqid | |
|
41 | 6 40 | ressplusg | |
42 | 39 41 | ax-mp | |
43 | 42 | eqcomi | |
44 | 1 33 43 | efmndov | |
45 | 44 | eqeq1d | |
46 | 43 | oveqi | |
47 | 1 33 40 | efmndov | |
48 | 47 | ancoms | |
49 | 46 48 | eqtrid | |
50 | 49 | eqeq1d | |
51 | 45 50 | anbi12d | |
52 | 32 51 | syl | |
53 | 52 | ralbidva | |
54 | 53 | rexbiia | |
55 | 27 54 | mpbir | |
56 | 1 2 3 4 5 6 | smndex1bas | |
57 | 56 | eqcomi | |
58 | eqid | |
|
59 | 57 58 | ismnddef | Could not format ( S e. Mnd <-> ( S e. Smgrp /\ E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) ) ) : No typesetting found for |- ( S e. Mnd <-> ( S e. Smgrp /\ E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) ) ) with typecode |- |
60 | 7 55 59 | mpbir2an | |