Metamath Proof Explorer


Theorem smndex1mnd

Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a monoid. (Contributed by AV, 16-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
smndex1mgm.b B=In0..^NGn
smndex1mgm.s S=M𝑠B
Assertion smndex1mnd SMnd

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 smndex1mgm.b B=In0..^NGn
6 smndex1mgm.s S=M𝑠B
7 1 2 3 4 5 6 smndex1sgrp Could not format S e. Smgrp : No typesetting found for |- S e. Smgrp with typecode |-
8 nn0ex 0V
9 8 mptex x0xmodNV
10 3 9 eqeltri IV
11 10 snid II
12 elun1 IIIIn0..^NGn
13 11 12 ax-mp IIn0..^NGn
14 13 5 eleqtrri IB
15 id IBIB
16 coeq1 a=Iab=Ib
17 16 eqeq1d a=Iab=bIb=b
18 coeq2 a=Iba=bI
19 18 eqeq1d a=Iba=bbI=b
20 17 19 anbi12d a=Iab=bba=bIb=bbI=b
21 20 ralbidv a=IbBab=bba=bbBIb=bbI=b
22 21 adantl IBa=IbBab=bba=bbBIb=bbI=b
23 1 2 3 4 5 6 smndex1mndlem bBIb=bbI=b
24 23 rgen bBIb=bbI=b
25 24 a1i IBbBIb=bbI=b
26 15 22 25 rspcedvd IBaBbBab=bba=b
27 14 26 ax-mp aBbBab=bba=b
28 1 2 3 4 5 smndex1basss BBaseM
29 ssel BBaseMaBaBaseM
30 ssel BBaseMbBbBaseM
31 29 30 anim12d BBaseMaBbBaBaseMbBaseM
32 28 31 ax-mp aBbBaBaseMbBaseM
33 eqid BaseM=BaseM
34 snex IV
35 ovex 0..^NV
36 snex GnV
37 35 36 iunex n0..^NGnV
38 34 37 unex In0..^NGnV
39 5 38 eqeltri BV
40 eqid +M=+M
41 6 40 ressplusg BV+M=+S
42 39 41 ax-mp +M=+S
43 42 eqcomi +S=+M
44 1 33 43 efmndov aBaseMbBaseMa+Sb=ab
45 44 eqeq1d aBaseMbBaseMa+Sb=bab=b
46 43 oveqi b+Sa=b+Ma
47 1 33 40 efmndov bBaseMaBaseMb+Ma=ba
48 47 ancoms aBaseMbBaseMb+Ma=ba
49 46 48 eqtrid aBaseMbBaseMb+Sa=ba
50 49 eqeq1d aBaseMbBaseMb+Sa=bba=b
51 45 50 anbi12d aBaseMbBaseMa+Sb=bb+Sa=bab=bba=b
52 32 51 syl aBbBa+Sb=bb+Sa=bab=bba=b
53 52 ralbidva aBbBa+Sb=bb+Sa=bbBab=bba=b
54 53 rexbiia aBbBa+Sb=bb+Sa=baBbBab=bba=b
55 27 54 mpbir aBbBa+Sb=bb+Sa=b
56 1 2 3 4 5 6 smndex1bas BaseS=B
57 56 eqcomi B=BaseS
58 eqid +S=+S
59 57 58 ismnddef Could not format ( S e. Mnd <-> ( S e. Smgrp /\ E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) ) ) : No typesetting found for |- ( S e. Mnd <-> ( S e. Smgrp /\ E. a e. B A. b e. B ( ( a ( +g ` S ) b ) = b /\ ( b ( +g ` S ) a ) = b ) ) ) with typecode |-
60 7 55 59 mpbir2an SMnd