Metamath Proof Explorer


Theorem smndex1mndlem

Description: Lemma for smndex1mnd and smndex1id . (Contributed by AV, 16-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
smndex1mgm.b B = I n 0 ..^ N G n
smndex1mgm.s S = M 𝑠 B
Assertion smndex1mndlem X B I X = X X I = X

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 smndex1mgm.b B = I n 0 ..^ N G n
6 smndex1mgm.s S = M 𝑠 B
7 elun X I n 0 ..^ N G n X I X n 0 ..^ N G n
8 elsni X I X = I
9 1 2 3 smndex1iidm I I = I
10 coeq2 X = I I X = I I
11 id X = I X = I
12 9 10 11 3eqtr4a X = I I X = X
13 coeq1 X = I X I = I I
14 9 13 11 3eqtr4a X = I X I = X
15 12 14 jca X = I I X = X X I = X
16 8 15 syl X I I X = X X I = X
17 eliun X n 0 ..^ N G n n 0 ..^ N X G n
18 fveq2 n = k G n = G k
19 18 sneqd n = k G n = G k
20 19 eleq2d n = k X G n X G k
21 20 cbvrexvw n 0 ..^ N X G n k 0 ..^ N X G k
22 elsni X G k X = G k
23 1 2 3 4 smndex1igid k 0 ..^ N I G k = G k
24 1 2 3 smndex1ibas I Base M
25 1 2 3 4 smndex1gid I Base M k 0 ..^ N G k I = G k
26 24 25 mpan k 0 ..^ N G k I = G k
27 23 26 jca k 0 ..^ N I G k = G k G k I = G k
28 coeq2 X = G k I X = I G k
29 id X = G k X = G k
30 28 29 eqeq12d X = G k I X = X I G k = G k
31 coeq1 X = G k X I = G k I
32 31 29 eqeq12d X = G k X I = X G k I = G k
33 30 32 anbi12d X = G k I X = X X I = X I G k = G k G k I = G k
34 27 33 syl5ibr X = G k k 0 ..^ N I X = X X I = X
35 22 34 syl X G k k 0 ..^ N I X = X X I = X
36 35 impcom k 0 ..^ N X G k I X = X X I = X
37 36 rexlimiva k 0 ..^ N X G k I X = X X I = X
38 21 37 sylbi n 0 ..^ N X G n I X = X X I = X
39 17 38 sylbi X n 0 ..^ N G n I X = X X I = X
40 16 39 jaoi X I X n 0 ..^ N G n I X = X X I = X
41 7 40 sylbi X I n 0 ..^ N G n I X = X X I = X
42 41 5 eleq2s X B I X = X X I = X