Metamath Proof Explorer


Theorem smndex1n0mnd

Description: The identity of the monoid M of endofunctions on set NN0 is not contained in the base set of the constructed monoid S . (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
smndex1mgm.b B = I n 0 ..^ N G n
smndex1mgm.s S = M 𝑠 B
Assertion smndex1n0mnd 0 M B

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 smndex1mgm.b B = I n 0 ..^ N G n
6 smndex1mgm.s S = M 𝑠 B
7 nnnn0 N N 0
8 fveq2 x = N I 0 x = I 0 N
9 2 7 ax-mp N 0
10 fvresi N 0 I 0 N = N
11 9 10 ax-mp I 0 N = N
12 8 11 eqtrdi x = N I 0 x = N
13 fveq2 x = N I x = I N
14 12 13 eqeq12d x = N I 0 x = I x N = I N
15 14 notbid x = N ¬ I 0 x = I x ¬ N = I N
16 15 adantl N x = N ¬ I 0 x = I x ¬ N = I N
17 nnne0 N N 0
18 17 neneqd N ¬ N = 0
19 oveq1 x = N x mod N = N mod N
20 nnrp N N +
21 modid0 N + N mod N = 0
22 20 21 syl N N mod N = 0
23 19 22 sylan9eqr N x = N x mod N = 0
24 c0ex 0 V
25 24 a1i N 0 V
26 3 23 7 25 fvmptd2 N I N = 0
27 26 eqeq2d N N = I N N = 0
28 18 27 mtbird N ¬ N = I N
29 7 16 28 rspcedvd N x 0 ¬ I 0 x = I x
30 2 29 ax-mp x 0 ¬ I 0 x = I x
31 rexnal x 0 ¬ I 0 x = I x ¬ x 0 I 0 x = I x
32 30 31 mpbi ¬ x 0 I 0 x = I x
33 fnresi I 0 Fn 0
34 ovex x mod N V
35 34 3 fnmpti I Fn 0
36 eqfnfv I 0 Fn 0 I Fn 0 I 0 = I x 0 I 0 x = I x
37 33 35 36 mp2an I 0 = I x 0 I 0 x = I x
38 32 37 mtbir ¬ I 0 = I
39 9 a1i n 0 ..^ N N 0
40 fveq2 x = N G n x = G n N
41 12 40 eqeq12d x = N I 0 x = G n x N = G n N
42 41 notbid x = N ¬ I 0 x = G n x ¬ N = G n N
43 42 adantl n 0 ..^ N x = N ¬ I 0 x = G n x ¬ N = G n N
44 fzonel ¬ N 0 ..^ N
45 eleq1 n = N n 0 ..^ N N 0 ..^ N
46 45 eqcoms N = n n 0 ..^ N N 0 ..^ N
47 44 46 mtbiri N = n ¬ n 0 ..^ N
48 47 con2i n 0 ..^ N ¬ N = n
49 nn0ex 0 V
50 49 mptex x 0 n V
51 4 fvmpt2 n 0 ..^ N x 0 n V G n = x 0 n
52 50 51 mpan2 n 0 ..^ N G n = x 0 n
53 eqidd n 0 ..^ N x = N n = n
54 id n 0 ..^ N n 0 ..^ N
55 52 53 39 54 fvmptd n 0 ..^ N G n N = n
56 55 eqeq2d n 0 ..^ N N = G n N N = n
57 48 56 mtbird n 0 ..^ N ¬ N = G n N
58 39 43 57 rspcedvd n 0 ..^ N x 0 ¬ I 0 x = G n x
59 rexnal x 0 ¬ I 0 x = G n x ¬ x 0 I 0 x = G n x
60 58 59 sylib n 0 ..^ N ¬ x 0 I 0 x = G n x
61 vex n V
62 eqid x 0 n = x 0 n
63 61 62 fnmpti x 0 n Fn 0
64 52 fneq1d n 0 ..^ N G n Fn 0 x 0 n Fn 0
65 63 64 mpbiri n 0 ..^ N G n Fn 0
66 eqfnfv I 0 Fn 0 G n Fn 0 I 0 = G n x 0 I 0 x = G n x
67 33 65 66 sylancr n 0 ..^ N I 0 = G n x 0 I 0 x = G n x
68 60 67 mtbird n 0 ..^ N ¬ I 0 = G n
69 68 nrex ¬ n 0 ..^ N I 0 = G n
70 38 69 pm3.2ni ¬ I 0 = I n 0 ..^ N I 0 = G n
71 1 efmndid 0 V I 0 = 0 M
72 49 71 ax-mp I 0 = 0 M
73 72 eqcomi 0 M = I 0
74 73 5 eleq12i 0 M B I 0 I n 0 ..^ N G n
75 elun I 0 I n 0 ..^ N G n I 0 I I 0 n 0 ..^ N G n
76 resiexg 0 V I 0 V
77 49 76 ax-mp I 0 V
78 77 elsn I 0 I I 0 = I
79 eliun I 0 n 0 ..^ N G n n 0 ..^ N I 0 G n
80 77 elsn I 0 G n I 0 = G n
81 80 rexbii n 0 ..^ N I 0 G n n 0 ..^ N I 0 = G n
82 79 81 bitri I 0 n 0 ..^ N G n n 0 ..^ N I 0 = G n
83 78 82 orbi12i I 0 I I 0 n 0 ..^ N G n I 0 = I n 0 ..^ N I 0 = G n
84 75 83 bitri I 0 I n 0 ..^ N G n I 0 = I n 0 ..^ N I 0 = G n
85 74 84 bitri 0 M B I 0 = I n 0 ..^ N I 0 = G n
86 70 85 mtbir ¬ 0 M B
87 86 nelir 0 M B