Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Free monoids
Monoid of endofunctions
smndex2dbas
Next ⟩
smndex2dnrinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
smndex2dbas
Description:
The doubling function
D
is an endofunction on
NN0
.
(Contributed by
AV
, 18-Feb-2024)
Ref
Expression
Hypotheses
smndex2dbas.m
⊢
M
=
EndoFMnd
⁡
ℕ
0
smndex2dbas.b
⊢
B
=
Base
M
smndex2dbas.0
⊢
0
˙
=
0
M
smndex2dbas.d
⊢
D
=
x
∈
ℕ
0
⟼
2
⁢
x
Assertion
smndex2dbas
⊢
D
∈
B
Proof
Step
Hyp
Ref
Expression
1
smndex2dbas.m
⊢
M
=
EndoFMnd
⁡
ℕ
0
2
smndex2dbas.b
⊢
B
=
Base
M
3
smndex2dbas.0
⊢
0
˙
=
0
M
4
smndex2dbas.d
⊢
D
=
x
∈
ℕ
0
⟼
2
⁢
x
5
2nn0
⊢
2
∈
ℕ
0
6
5
a1i
⊢
x
∈
ℕ
0
→
2
∈
ℕ
0
7
id
⊢
x
∈
ℕ
0
→
x
∈
ℕ
0
8
6
7
nn0mulcld
⊢
x
∈
ℕ
0
→
2
⁢
x
∈
ℕ
0
9
4
8
fmpti
⊢
D
:
ℕ
0
⟶
ℕ
0
10
nn0ex
⊢
ℕ
0
∈
V
11
10
mptex
⊢
x
∈
ℕ
0
⟼
2
⁢
x
∈
V
12
4
11
eqeltri
⊢
D
∈
V
13
1
2
elefmndbas2
⊢
D
∈
V
→
D
∈
B
↔
D
:
ℕ
0
⟶
ℕ
0
14
12
13
ax-mp
⊢
D
∈
B
↔
D
:
ℕ
0
⟶
ℕ
0
15
9
14
mpbir
⊢
D
∈
B