Metamath Proof Explorer


Theorem smndex2dbas

Description: The doubling function D is an endofunction on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B = Base M
smndex2dbas.0 0 ˙ = 0 M
smndex2dbas.d D = x 0 2 x
Assertion smndex2dbas D B

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B = Base M
3 smndex2dbas.0 0 ˙ = 0 M
4 smndex2dbas.d D = x 0 2 x
5 2nn0 2 0
6 5 a1i x 0 2 0
7 id x 0 x 0
8 6 7 nn0mulcld x 0 2 x 0
9 4 8 fmpti D : 0 0
10 nn0ex 0 V
11 10 mptex x 0 2 x V
12 4 11 eqeltri D V
13 1 2 elefmndbas2 D V D B D : 0 0
14 12 13 ax-mp D B D : 0 0
15 9 14 mpbir D B