Metamath Proof Explorer


Theorem smndex2hbas

Description: The halving functions H are endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B = Base M
smndex2dbas.0 0 ˙ = 0 M
smndex2dbas.d D = x 0 2 x
smndex2hbas.n N 0
smndex2hbas.h H = x 0 if 2 x x 2 N
Assertion smndex2hbas H B

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B = Base M
3 smndex2dbas.0 0 ˙ = 0 M
4 smndex2dbas.d D = x 0 2 x
5 smndex2hbas.n N 0
6 smndex2hbas.h H = x 0 if 2 x x 2 N
7 nn0ehalf x 0 2 x x 2 0
8 5 a1i x 0 ¬ 2 x N 0
9 7 8 ifclda x 0 if 2 x x 2 N 0
10 6 9 fmpti H : 0 0
11 nn0ex 0 V
12 11 mptex x 0 if 2 x x 2 N V
13 6 12 eqeltri H V
14 1 2 elefmndbas2 H V H B H : 0 0
15 13 14 ax-mp H B H : 0 0
16 10 15 mpbir H B