Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmub1.p | |
|
Assertion | smndlsmidm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmub1.p | |
|
2 | elfvdm | |
|
3 | eqid | |
|
4 | 3 | submss | |
5 | eqid | |
|
6 | 3 5 1 | lsmvalx | |
7 | 2 4 4 6 | syl3anc | |
8 | 5 | submcl | |
9 | 8 | 3expb | |
10 | 9 | ralrimivva | |
11 | eqid | |
|
12 | 11 | fmpo | |
13 | 10 12 | sylib | |
14 | 13 | frnd | |
15 | 7 14 | eqsstrd | |
16 | 3 1 | lsmub1x | |
17 | 4 16 | mpancom | |
18 | 15 17 | eqssd | |