Metamath Proof Explorer


Theorem smndlsmidm

Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion smndlsmidm USubMndGU˙U=U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 elfvdm USubMndGGdomSubMnd
3 eqid BaseG=BaseG
4 3 submss USubMndGUBaseG
5 eqid +G=+G
6 3 5 1 lsmvalx GdomSubMndUBaseGUBaseGU˙U=ranxU,yUx+Gy
7 2 4 4 6 syl3anc USubMndGU˙U=ranxU,yUx+Gy
8 5 submcl USubMndGxUyUx+GyU
9 8 3expb USubMndGxUyUx+GyU
10 9 ralrimivva USubMndGxUyUx+GyU
11 eqid xU,yUx+Gy=xU,yUx+Gy
12 11 fmpo xUyUx+GyUxU,yUx+Gy:U×UU
13 10 12 sylib USubMndGxU,yUx+Gy:U×UU
14 13 frnd USubMndGranxU,yUx+GyU
15 7 14 eqsstrd USubMndGU˙UU
16 3 1 lsmub1x UBaseGUSubMndGUU˙U
17 4 16 mpancom USubMndGUU˙U
18 15 17 eqssd USubMndGU˙U=U