Metamath Proof Explorer


Theorem smoel2

Description: A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion smoel2 F Fn A Smo F B A C B F C F B

Proof

Step Hyp Ref Expression
1 fndm F Fn A dom F = A
2 1 eleq2d F Fn A B dom F B A
3 2 anbi1d F Fn A B dom F C B B A C B
4 3 biimprd F Fn A B A C B B dom F C B
5 smoel Smo F B dom F C B F C F B
6 5 3expib Smo F B dom F C B F C F B
7 4 6 sylan9 F Fn A Smo F B A C B F C F B
8 7 imp F Fn A Smo F B A C B F C F B