Metamath Proof Explorer


Theorem smofvon2

Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion smofvon2 Smo F F B On

Proof

Step Hyp Ref Expression
1 dfsmo2 Smo F F : dom F On Ord dom F x dom F y x F y F x
2 1 simp1bi Smo F F : dom F On
3 ffvelrn F : dom F On B dom F F B On
4 3 expcom B dom F F : dom F On F B On
5 2 4 syl5 B dom F Smo F F B On
6 ndmfv ¬ B dom F F B =
7 0elon On
8 6 7 eqeltrdi ¬ B dom F F B On
9 8 a1d ¬ B dom F Smo F F B On
10 5 9 pm2.61i Smo F F B On