| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|
| 2 |
|
fveq2 |
|
| 3 |
1 2
|
sseq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
smodm2 |
|
| 6 |
5
|
3adant3 |
|
| 7 |
|
simp3 |
|
| 8 |
|
ordelord |
|
| 9 |
6 7 8
|
syl2anc |
|
| 10 |
|
vex |
|
| 11 |
10
|
elon |
|
| 12 |
9 11
|
sylibr |
|
| 13 |
|
eleq1w |
|
| 14 |
13
|
3anbi3d |
|
| 15 |
|
id |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
sseq12d |
|
| 18 |
14 17
|
imbi12d |
|
| 19 |
|
simpl1 |
|
| 20 |
|
simpl2 |
|
| 21 |
|
ordtr1 |
|
| 22 |
21
|
expcomd |
|
| 23 |
6 7 22
|
sylc |
|
| 24 |
23
|
imp |
|
| 25 |
|
pm2.27 |
|
| 26 |
19 20 24 25
|
syl3anc |
|
| 27 |
26
|
ralimdva |
|
| 28 |
5
|
3adant3 |
|
| 29 |
|
simp31 |
|
| 30 |
28 29 8
|
syl2anc |
|
| 31 |
|
simp32 |
|
| 32 |
|
ordelord |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
|
smofvon2 |
|
| 35 |
34
|
3ad2ant2 |
|
| 36 |
|
eloni |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
simp33 |
|
| 39 |
|
smoel2 |
|
| 40 |
39
|
3adantr3 |
|
| 41 |
40
|
3impa |
|
| 42 |
|
ordtr2 |
|
| 43 |
42
|
imp |
|
| 44 |
33 37 38 41 43
|
syl22anc |
|
| 45 |
44
|
3expia |
|
| 46 |
45
|
3expd |
|
| 47 |
46
|
3impia |
|
| 48 |
47
|
imp |
|
| 49 |
48
|
ralimdva |
|
| 50 |
|
dfss3 |
|
| 51 |
49 50
|
imbitrrdi |
|
| 52 |
27 51
|
syldc |
|
| 53 |
52
|
a1i |
|
| 54 |
18 53
|
tfis2 |
|
| 55 |
12 54
|
mpcom |
|
| 56 |
55
|
3expia |
|
| 57 |
56
|
com12 |
|
| 58 |
4 57
|
vtoclga |
|
| 59 |
58
|
com12 |
|
| 60 |
59
|
3impia |
|