| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isof1o |  | 
						
							| 2 |  | f1of |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | ffdm |  | 
						
							| 5 | 4 | simpld |  | 
						
							| 6 |  | fss |  | 
						
							| 7 | 5 6 | sylan |  | 
						
							| 8 | 7 | 3adant2 |  | 
						
							| 9 | 3 8 | syl3an1 |  | 
						
							| 10 |  | fdm |  | 
						
							| 11 | 10 | eqcomd |  | 
						
							| 12 |  | ordeq |  | 
						
							| 13 | 1 2 11 12 | 4syl |  | 
						
							| 14 | 13 | biimpa |  | 
						
							| 15 | 14 | 3adant3 |  | 
						
							| 16 | 10 | eleq2d |  | 
						
							| 17 | 10 | eleq2d |  | 
						
							| 18 | 16 17 | anbi12d |  | 
						
							| 19 | 1 2 18 | 3syl |  | 
						
							| 20 |  | isorel |  | 
						
							| 21 |  | epel |  | 
						
							| 22 |  | fvex |  | 
						
							| 23 | 22 | epeli |  | 
						
							| 24 | 20 21 23 | 3bitr3g |  | 
						
							| 25 | 24 | biimpd |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 19 26 | sylbid |  | 
						
							| 28 | 27 | ralrimivv |  | 
						
							| 29 | 28 | 3ad2ant1 |  | 
						
							| 30 |  | df-smo |  | 
						
							| 31 | 9 15 29 30 | syl3anbrc |  |