Metamath Proof Explorer


Theorem smoiun

Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011)

Ref Expression
Assertion smoiun Smo B A dom B x A B x B A

Proof

Step Hyp Ref Expression
1 eliun y x A B x x A y B x
2 smofvon Smo B A dom B B A On
3 smoel Smo B A dom B x A B x B A
4 3 3expia Smo B A dom B x A B x B A
5 ontr1 B A On y B x B x B A y B A
6 5 expcomd B A On B x B A y B x y B A
7 2 4 6 sylsyld Smo B A dom B x A y B x y B A
8 7 rexlimdv Smo B A dom B x A y B x y B A
9 1 8 syl5bi Smo B A dom B y x A B x y B A
10 9 ssrdv Smo B A dom B x A B x B A