Metamath Proof Explorer


Theorem smonoord

Description: Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord (except that the case M = N must be excluded). Duplicate of monoords ? (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses smonoord.0 φ M
smonoord.1 φ N M + 1
smonoord.2 φ k M N F k
smonoord.3 φ k M N 1 F k < F k + 1
Assertion smonoord φ F M < F N

Proof

Step Hyp Ref Expression
1 smonoord.0 φ M
2 smonoord.1 φ N M + 1
3 smonoord.2 φ k M N F k
4 smonoord.3 φ k M N 1 F k < F k + 1
5 eluzfz2 N M + 1 N M + 1 N
6 2 5 syl φ N M + 1 N
7 eleq1 x = M + 1 x M + 1 N M + 1 M + 1 N
8 fveq2 x = M + 1 F x = F M + 1
9 8 breq2d x = M + 1 F M < F x F M < F M + 1
10 7 9 imbi12d x = M + 1 x M + 1 N F M < F x M + 1 M + 1 N F M < F M + 1
11 10 imbi2d x = M + 1 φ x M + 1 N F M < F x φ M + 1 M + 1 N F M < F M + 1
12 eleq1 x = n x M + 1 N n M + 1 N
13 fveq2 x = n F x = F n
14 13 breq2d x = n F M < F x F M < F n
15 12 14 imbi12d x = n x M + 1 N F M < F x n M + 1 N F M < F n
16 15 imbi2d x = n φ x M + 1 N F M < F x φ n M + 1 N F M < F n
17 eleq1 x = n + 1 x M + 1 N n + 1 M + 1 N
18 fveq2 x = n + 1 F x = F n + 1
19 18 breq2d x = n + 1 F M < F x F M < F n + 1
20 17 19 imbi12d x = n + 1 x M + 1 N F M < F x n + 1 M + 1 N F M < F n + 1
21 20 imbi2d x = n + 1 φ x M + 1 N F M < F x φ n + 1 M + 1 N F M < F n + 1
22 eleq1 x = N x M + 1 N N M + 1 N
23 fveq2 x = N F x = F N
24 23 breq2d x = N F M < F x F M < F N
25 22 24 imbi12d x = N x M + 1 N F M < F x N M + 1 N F M < F N
26 25 imbi2d x = N φ x M + 1 N F M < F x φ N M + 1 N F M < F N
27 eluzp1m1 M N M + 1 N 1 M
28 1 2 27 syl2anc φ N 1 M
29 eluzfz1 N 1 M M M N 1
30 28 29 syl φ M M N 1
31 4 ralrimiva φ k M N 1 F k < F k + 1
32 fveq2 k = M F k = F M
33 fvoveq1 k = M F k + 1 = F M + 1
34 32 33 breq12d k = M F k < F k + 1 F M < F M + 1
35 34 rspcv M M N 1 k M N 1 F k < F k + 1 F M < F M + 1
36 30 31 35 sylc φ F M < F M + 1
37 36 a1d φ M + 1 M + 1 N F M < F M + 1
38 37 a1i M + 1 φ M + 1 M + 1 N F M < F M + 1
39 peano2fzr n M + 1 n + 1 M + 1 N n M + 1 N
40 39 adantll φ n M + 1 n + 1 M + 1 N n M + 1 N
41 40 ex φ n M + 1 n + 1 M + 1 N n M + 1 N
42 41 imim1d φ n M + 1 n M + 1 N F M < F n n + 1 M + 1 N F M < F n
43 peano2uzr M n M + 1 n M
44 43 ex M n M + 1 n M
45 44 1 syl11 n M + 1 φ n M
46 45 adantr n M + 1 n + 1 M + 1 N φ n M
47 46 impcom φ n M + 1 n + 1 M + 1 N n M
48 eluzelz n M + 1 n
49 48 adantr n M + 1 n + 1 M + 1 N n
50 49 adantl φ n M + 1 n + 1 M + 1 N n
51 elfzuz3 n + 1 M + 1 N N n + 1
52 51 ad2antll φ n M + 1 n + 1 M + 1 N N n + 1
53 eluzp1m1 n N n + 1 N 1 n
54 50 52 53 syl2anc φ n M + 1 n + 1 M + 1 N N 1 n
55 elfzuzb n M N 1 n M N 1 n
56 47 54 55 sylanbrc φ n M + 1 n + 1 M + 1 N n M N 1
57 31 adantr φ n M + 1 n + 1 M + 1 N k M N 1 F k < F k + 1
58 fveq2 k = n F k = F n
59 fvoveq1 k = n F k + 1 = F n + 1
60 58 59 breq12d k = n F k < F k + 1 F n < F n + 1
61 60 rspcv n M N 1 k M N 1 F k < F k + 1 F n < F n + 1
62 56 57 61 sylc φ n M + 1 n + 1 M + 1 N F n < F n + 1
63 zre M M
64 63 lep1d M M M + 1
65 1 64 jccir φ M M M + 1
66 eluzuzle M M M + 1 N M + 1 N M
67 65 2 66 sylc φ N M
68 eluzfz1 N M M M N
69 67 68 syl φ M M N
70 3 ralrimiva φ k M N F k
71 32 eleq1d k = M F k F M
72 71 rspcv M M N k M N F k F M
73 69 70 72 sylc φ F M
74 73 adantr φ n M + 1 n + 1 M + 1 N F M
75 fzp1ss M M + 1 N M N
76 1 75 syl φ M + 1 N M N
77 76 sseld φ n + 1 M + 1 N n + 1 M N
78 77 com12 n + 1 M + 1 N φ n + 1 M N
79 78 adantl n M + 1 n + 1 M + 1 N φ n + 1 M N
80 79 impcom φ n M + 1 n + 1 M + 1 N n + 1 M N
81 peano2fzr n M n + 1 M N n M N
82 47 80 81 syl2anc φ n M + 1 n + 1 M + 1 N n M N
83 70 adantr φ n M + 1 n + 1 M + 1 N k M N F k
84 58 eleq1d k = n F k F n
85 84 rspcv n M N k M N F k F n
86 82 83 85 sylc φ n M + 1 n + 1 M + 1 N F n
87 fveq2 k = n + 1 F k = F n + 1
88 87 eleq1d k = n + 1 F k F n + 1
89 88 rspcv n + 1 M N k M N F k F n + 1
90 80 83 89 sylc φ n M + 1 n + 1 M + 1 N F n + 1
91 lttr F M F n F n + 1 F M < F n F n < F n + 1 F M < F n + 1
92 74 86 90 91 syl3anc φ n M + 1 n + 1 M + 1 N F M < F n F n < F n + 1 F M < F n + 1
93 62 92 mpan2d φ n M + 1 n + 1 M + 1 N F M < F n F M < F n + 1
94 42 93 animpimp2impd n M + 1 φ n M + 1 N F M < F n φ n + 1 M + 1 N F M < F n + 1
95 11 16 21 26 38 94 uzind4 N M + 1 φ N M + 1 N F M < F N
96 2 95 mpcom φ N M + 1 N F M < F N
97 6 96 mpd φ F M < F N