Metamath Proof Explorer


Theorem smorndom

Description: The range of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013)

Ref Expression
Assertion smorndom F : A B Smo F Ord B A B

Proof

Step Hyp Ref Expression
1 simpl1 F : A B Smo F Ord B x A F : A B
2 1 ffnd F : A B Smo F Ord B x A F Fn A
3 simpl2 F : A B Smo F Ord B x A Smo F
4 smodm2 F Fn A Smo F Ord A
5 2 3 4 syl2anc F : A B Smo F Ord B x A Ord A
6 ordelord Ord A x A Ord x
7 5 6 sylancom F : A B Smo F Ord B x A Ord x
8 simpl3 F : A B Smo F Ord B x A Ord B
9 simpr F : A B Smo F Ord B x A x A
10 smogt F Fn A Smo F x A x F x
11 2 3 9 10 syl3anc F : A B Smo F Ord B x A x F x
12 ffvelrn F : A B x A F x B
13 12 3ad2antl1 F : A B Smo F Ord B x A F x B
14 ordtr2 Ord x Ord B x F x F x B x B
15 14 imp Ord x Ord B x F x F x B x B
16 7 8 11 13 15 syl22anc F : A B Smo F Ord B x A x B
17 16 ex F : A B Smo F Ord B x A x B
18 17 ssrdv F : A B Smo F Ord B A B