Metamath Proof Explorer


Theorem smoword

Description: A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013)

Ref Expression
Assertion smoword F Fn A Smo F C A D A C D F C F D

Proof

Step Hyp Ref Expression
1 smoord F Fn A Smo F D A C A D C F D F C
2 1 notbid F Fn A Smo F D A C A ¬ D C ¬ F D F C
3 2 ancom2s F Fn A Smo F C A D A ¬ D C ¬ F D F C
4 smodm2 F Fn A Smo F Ord A
5 simprl F Fn A Smo F C A D A C A
6 ordelord Ord A C A Ord C
7 4 5 6 syl2an2r F Fn A Smo F C A D A Ord C
8 simprr F Fn A Smo F C A D A D A
9 ordelord Ord A D A Ord D
10 4 8 9 syl2an2r F Fn A Smo F C A D A Ord D
11 ordtri1 Ord C Ord D C D ¬ D C
12 7 10 11 syl2anc F Fn A Smo F C A D A C D ¬ D C
13 simplr F Fn A Smo F C A D A Smo F
14 smofvon2 Smo F F C On
15 eloni F C On Ord F C
16 13 14 15 3syl F Fn A Smo F C A D A Ord F C
17 smofvon2 Smo F F D On
18 eloni F D On Ord F D
19 13 17 18 3syl F Fn A Smo F C A D A Ord F D
20 ordtri1 Ord F C Ord F D F C F D ¬ F D F C
21 16 19 20 syl2anc F Fn A Smo F C A D A F C F D ¬ F D F C
22 3 12 21 3bitr4d F Fn A Smo F C A D A C D F C F D