| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smueq.a |
|
| 2 |
|
smueq.b |
|
| 3 |
|
smueq.n |
|
| 4 |
|
smueq.p |
|
| 5 |
|
smueq.q |
|
| 6 |
1
|
adantr |
|
| 7 |
2
|
adantr |
|
| 8 |
|
elfzouz |
|
| 9 |
8
|
adantl |
|
| 10 |
|
nn0uz |
|
| 11 |
9 10
|
eleqtrrdi |
|
| 12 |
11
|
nn0zd |
|
| 13 |
12
|
peano2zd |
|
| 14 |
3
|
adantr |
|
| 15 |
14
|
nn0zd |
|
| 16 |
|
elfzolt2 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
nn0ltp1le |
|
| 19 |
11 14 18
|
syl2anc |
|
| 20 |
17 19
|
mpbid |
|
| 21 |
|
eluz2 |
|
| 22 |
13 15 20 21
|
syl3anbrc |
|
| 23 |
6 7 4 11 22
|
smuval2 |
|
| 24 |
3 10
|
eleqtrdi |
|
| 25 |
|
eluzfz2b |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
ineq1d |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
ineq1d |
|
| 31 |
28 30
|
eqeq12d |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
ineq1d |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
ineq1d |
|
| 37 |
34 36
|
eqeq12d |
|
| 38 |
37
|
imbi2d |
|
| 39 |
|
fveq2 |
|
| 40 |
39
|
ineq1d |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
ineq1d |
|
| 43 |
40 42
|
eqeq12d |
|
| 44 |
43
|
imbi2d |
|
| 45 |
|
fveq2 |
|
| 46 |
45
|
ineq1d |
|
| 47 |
|
fveq2 |
|
| 48 |
47
|
ineq1d |
|
| 49 |
46 48
|
eqeq12d |
|
| 50 |
49
|
imbi2d |
|
| 51 |
1 2 4
|
smup0 |
|
| 52 |
|
inss1 |
|
| 53 |
52 2
|
sstrid |
|
| 54 |
1 53 5
|
smup0 |
|
| 55 |
51 54
|
eqtr4d |
|
| 56 |
55
|
ineq1d |
|
| 57 |
56
|
a1i |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
ineq1d |
|
| 60 |
1
|
adantr |
|
| 61 |
2
|
adantr |
|
| 62 |
|
elfzonn0 |
|
| 63 |
62
|
adantl |
|
| 64 |
60 61 4 63
|
smupp1 |
|
| 65 |
64
|
ineq1d |
|
| 66 |
1 2 4
|
smupf |
|
| 67 |
|
ffvelcdm |
|
| 68 |
66 62 67
|
syl2an |
|
| 69 |
68
|
elpwid |
|
| 70 |
|
ssrab2 |
|
| 71 |
70
|
a1i |
|
| 72 |
3
|
adantr |
|
| 73 |
69 71 72
|
sadeq |
|
| 74 |
65 73
|
eqtrd |
|
| 75 |
53
|
adantr |
|
| 76 |
60 75 5 63
|
smupp1 |
|
| 77 |
76
|
ineq1d |
|
| 78 |
1 53 5
|
smupf |
|
| 79 |
|
ffvelcdm |
|
| 80 |
78 62 79
|
syl2an |
|
| 81 |
80
|
elpwid |
|
| 82 |
|
ssrab2 |
|
| 83 |
82
|
a1i |
|
| 84 |
81 83 72
|
sadeq |
|
| 85 |
|
elinel2 |
|
| 86 |
61
|
adantr |
|
| 87 |
86
|
sseld |
|
| 88 |
|
elfzo0 |
|
| 89 |
88
|
simp2bi |
|
| 90 |
89
|
adantl |
|
| 91 |
|
elfzonn0 |
|
| 92 |
91
|
adantl |
|
| 93 |
92
|
nn0red |
|
| 94 |
63
|
adantr |
|
| 95 |
94
|
nn0red |
|
| 96 |
93 95
|
resubcld |
|
| 97 |
90
|
nnred |
|
| 98 |
94
|
nn0ge0d |
|
| 99 |
93 95
|
subge02d |
|
| 100 |
98 99
|
mpbid |
|
| 101 |
|
elfzolt2 |
|
| 102 |
101
|
adantl |
|
| 103 |
96 93 97 100 102
|
lelttrd |
|
| 104 |
90 103
|
jca |
|
| 105 |
|
elfzo0 |
|
| 106 |
|
3anass |
|
| 107 |
105 106
|
bitri |
|
| 108 |
107
|
baib |
|
| 109 |
104 108
|
syl5ibrcom |
|
| 110 |
87 109
|
syld |
|
| 111 |
110
|
pm4.71rd |
|
| 112 |
|
ancom |
|
| 113 |
|
elin |
|
| 114 |
112 113
|
bitr4i |
|
| 115 |
111 114
|
bitr2di |
|
| 116 |
115
|
anbi2d |
|
| 117 |
85 116
|
sylan2 |
|
| 118 |
117
|
rabbidva |
|
| 119 |
|
inrab2 |
|
| 120 |
|
inrab2 |
|
| 121 |
118 119 120
|
3eqtr4g |
|
| 122 |
121
|
oveq2d |
|
| 123 |
122
|
ineq1d |
|
| 124 |
77 84 123
|
3eqtrd |
|
| 125 |
74 124
|
eqeq12d |
|
| 126 |
59 125
|
imbitrrid |
|
| 127 |
126
|
expcom |
|
| 128 |
127
|
a2d |
|
| 129 |
32 38 44 50 57 128
|
fzind2 |
|
| 130 |
26 129
|
mpcom |
|
| 131 |
130
|
adantr |
|
| 132 |
131
|
eleq2d |
|
| 133 |
|
elin |
|
| 134 |
133
|
rbaib |
|
| 135 |
134
|
adantl |
|
| 136 |
|
elin |
|
| 137 |
136
|
rbaib |
|
| 138 |
137
|
adantl |
|
| 139 |
132 135 138
|
3bitr3d |
|
| 140 |
53
|
adantr |
|
| 141 |
6 140 5 14
|
smupval |
|
| 142 |
141
|
eleq2d |
|
| 143 |
23 139 142
|
3bitrd |
|
| 144 |
143
|
ex |
|
| 145 |
144
|
pm5.32rd |
|
| 146 |
|
elin |
|
| 147 |
|
elin |
|
| 148 |
145 146 147
|
3bitr4g |
|
| 149 |
148
|
eqrdv |
|