| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smupval.a |
|
| 2 |
|
smupval.b |
|
| 3 |
|
smupval.p |
|
| 4 |
|
smupval.n |
|
| 5 |
|
nn0uz |
|
| 6 |
4 5
|
eleqtrdi |
|
| 7 |
|
eluzfz2b |
|
| 8 |
6 7
|
sylib |
|
| 9 |
|
fveq2 |
|
| 10 |
|
fveq2 |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
fveq2 |
|
| 14 |
|
fveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
fveq2 |
|
| 19 |
17 18
|
eqeq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
fveq2 |
|
| 22 |
|
fveq2 |
|
| 23 |
21 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
1 2 3
|
smup0 |
|
| 26 |
|
inss1 |
|
| 27 |
26 1
|
sstrid |
|
| 28 |
|
eqid |
|
| 29 |
27 2 28
|
smup0 |
|
| 30 |
25 29
|
eqtr4d |
|
| 31 |
30
|
a1i |
|
| 32 |
|
oveq1 |
|
| 33 |
1
|
adantr |
|
| 34 |
2
|
adantr |
|
| 35 |
|
elfzouz |
|
| 36 |
35
|
adantl |
|
| 37 |
36 5
|
eleqtrrdi |
|
| 38 |
33 34 3 37
|
smupp1 |
|
| 39 |
27
|
adantr |
|
| 40 |
39 34 28 37
|
smupp1 |
|
| 41 |
|
elin |
|
| 42 |
41
|
rbaib |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
anbi1d |
|
| 45 |
44
|
rabbidv |
|
| 46 |
45
|
oveq2d |
|
| 47 |
40 46
|
eqtrd |
|
| 48 |
38 47
|
eqeq12d |
|
| 49 |
32 48
|
imbitrrid |
|
| 50 |
49
|
expcom |
|
| 51 |
50
|
a2d |
|
| 52 |
12 16 20 24 31 51
|
fzind2 |
|
| 53 |
8 52
|
mpcom |
|
| 54 |
|
inss2 |
|
| 55 |
54
|
a1i |
|
| 56 |
4
|
nn0zd |
|
| 57 |
|
uzid |
|
| 58 |
56 57
|
syl |
|
| 59 |
27 2 28 4 55 58
|
smupvallem |
|
| 60 |
53 59
|
eqtrd |
|