Metamath Proof Explorer


Theorem sn-dtru

Description: dtru without ax-8 or ax-12 . (Contributed by SN, 21-Sep-2023)

Ref Expression
Assertion sn-dtru ¬ x x = y

Proof

Step Hyp Ref Expression
1 sn-el w x x w
2 ax-nul z x ¬ x z
3 exdistrv w z x x w x ¬ x z w x x w z x ¬ x z
4 1 2 3 mpbir2an w z x x w x ¬ x z
5 ax9v1 w = z x w x z
6 5 eximdv w = z x x w x x z
7 df-ex x x z ¬ x ¬ x z
8 6 7 syl6ib w = z x x w ¬ x ¬ x z
9 imnan x x w ¬ x ¬ x z ¬ x x w x ¬ x z
10 8 9 sylib w = z ¬ x x w x ¬ x z
11 10 con2i x x w x ¬ x z ¬ w = z
12 11 2eximi w z x x w x ¬ x z w z ¬ w = z
13 equeuclr z = y w = y w = z
14 13 con3d z = y ¬ w = z ¬ w = y
15 ax7v1 x = w x = y w = y
16 15 con3d x = w ¬ w = y ¬ x = y
17 16 spimevw ¬ w = y x ¬ x = y
18 14 17 syl6 z = y ¬ w = z x ¬ x = y
19 ax7v1 x = z x = y z = y
20 19 con3d x = z ¬ z = y ¬ x = y
21 20 spimevw ¬ z = y x ¬ x = y
22 21 a1d ¬ z = y ¬ w = z x ¬ x = y
23 18 22 pm2.61i ¬ w = z x ¬ x = y
24 23 exlimivv w z ¬ w = z x ¬ x = y
25 4 12 24 mp2b x ¬ x = y
26 exnal x ¬ x = y ¬ x x = y
27 25 26 mpbi ¬ x x = y