Metamath Proof Explorer


Theorem sn-el

Description: A version of el with an inner existential quantifier on x , which avoids ax-7 and ax-8 . (Contributed by SN, 18-Sep-2023)

Ref Expression
Assertion sn-el y x x y

Proof

Step Hyp Ref Expression
1 ax-pow y x w w x w z x y
2 ax6ev x x = z
3 ax9v1 x = z w x w z
4 3 alrimiv x = z w w x w z
5 2 4 eximii x w w x w z
6 exim x w w x w z x y x w w x w z x x y
7 5 6 mpi x w w x w z x y x x y
8 1 7 eximii y x x y