Metamath Proof Explorer


Theorem sn-inelr

Description: inelr without ax-mulcom . (Contributed by SN, 1-Jun-2024)

Ref Expression
Assertion sn-inelr ¬ i

Proof

Step Hyp Ref Expression
1 0re 0
2 lttri4 i 0 i < 0 i = 0 0 < i
3 1 2 mpan2 i i < 0 i = 0 0 < i
4 reneg1lt0 0 - 1 < 0
5 1re 1
6 rernegcl 1 0 - 1
7 5 6 ax-mp 0 - 1
8 7 1 ltnsymi 0 - 1 < 0 ¬ 0 < 0 - 1
9 4 8 ax-mp ¬ 0 < 0 - 1
10 relt0neg1 i i < 0 0 < 0 - i
11 rernegcl i 0 - i
12 mulgt0 0 - i 0 < 0 - i 0 - i 0 < 0 - i 0 < 0 - i 0 - i
13 12 anidms 0 - i 0 < 0 - i 0 < 0 - i 0 - i
14 11 13 sylan i 0 < 0 - i 0 < 0 - i 0 - i
15 id i i
16 11 15 remulneg2d i 0 - i 0 - i = 0 - 0 - i i
17 15 15 remulcld i i i
18 15 17 remulcld i i i i
19 ipiiie0 i + i i i = 0
20 renegadd i i i i 0 - i = i i i i + i i i = 0
21 19 20 mpbiri i i i i 0 - i = i i i
22 18 21 mpdan i 0 - i = i i i
23 22 oveq1d i 0 - i i = i i i i
24 ax-icn i
25 24 24 24 mulassi i i i = i i i
26 25 oveq1i i i i i = i i i i
27 24 24 mulcli i i
28 27 24 24 mulassi i i i i = i i i i
29 26 28 eqtr3i i i i i = i i i i
30 29 a1i i i i i i = i i i i
31 rei4 i i i i = 1
32 31 a1i i i i i i = 1
33 23 30 32 3eqtrd i 0 - i i = 1
34 33 oveq2d i 0 - 0 - i i = 0 - 1
35 16 34 eqtrd i 0 - i 0 - i = 0 - 1
36 35 breq2d i 0 < 0 - i 0 - i 0 < 0 - 1
37 36 adantr i 0 < 0 - i 0 < 0 - i 0 - i 0 < 0 - 1
38 14 37 mpbid i 0 < 0 - i 0 < 0 - 1
39 38 ex i 0 < 0 - i 0 < 0 - 1
40 10 39 sylbid i i < 0 0 < 0 - 1
41 9 40 mtoi i ¬ i < 0
42 0ne1 0 1
43 42 neii ¬ 0 = 1
44 oveq12 i = 0 i = 0 i i = 0 0
45 44 anidms i = 0 i i = 0 0
46 45 oveq1d i = 0 i i + 1 = 0 0 + 1
47 ax-i2m1 i i + 1 = 0
48 remul02 0 0 0 = 0
49 1 48 ax-mp 0 0 = 0
50 49 oveq1i 0 0 + 1 = 0 + 1
51 readdlid 1 0 + 1 = 1
52 5 51 ax-mp 0 + 1 = 1
53 50 52 eqtri 0 0 + 1 = 1
54 46 47 53 3eqtr3g i = 0 0 = 1
55 43 54 mto ¬ i = 0
56 55 a1i i ¬ i = 0
57 mulgt0 i 0 < i i 0 < i 0 < i i
58 57 anidms i 0 < i 0 < i i
59 reixi i i = 0 - 1
60 58 59 breqtrdi i 0 < i 0 < 0 - 1
61 60 ex i 0 < i 0 < 0 - 1
62 9 61 mtoi i ¬ 0 < i
63 3ioran ¬ i < 0 i = 0 0 < i ¬ i < 0 ¬ i = 0 ¬ 0 < i
64 41 56 62 63 syl3anbrc i ¬ i < 0 i = 0 0 < i
65 3 64 pm2.65i ¬ i