Metamath Proof Explorer


Theorem sn-iotaex

Description: iotaex without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotaex ι x | φ V

Proof

Step Hyp Ref Expression
1 sn-iotaval x | φ = y ι x | φ = y
2 vex y V
3 1 2 eqeltrdi x | φ = y ι x | φ V
4 3 exlimiv y x | φ = y ι x | φ V
5 sn-iotanul ¬ y x | φ = y ι x | φ =
6 0ex V
7 5 6 eqeltrdi ¬ y x | φ = y ι x | φ V
8 4 7 pm2.61i ι x | φ V