Metamath Proof Explorer


Theorem sn-iotalem

Description: An unused lemma showing that many equivalences involving df-iota are potentially provable without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotalem y | x | φ = y = z | y | x | φ = y = z

Proof

Step Hyp Ref Expression
1 eqeq1 x | φ = w x | φ = z w = z
2 sneqbg w V w = z w = z
3 2 elv w = z w = z
4 equcom w = z z = w
5 3 4 bitri w = z z = w
6 1 5 bitrdi x | φ = w x | φ = z z = w
7 sneq y = z y = z
8 7 eqeq2d y = z x | φ = y x | φ = z
9 8 elabg z V z y | x | φ = y x | φ = z
10 9 elv z y | x | φ = y x | φ = z
11 velsn z w z = w
12 6 10 11 3bitr4g x | φ = w z y | x | φ = y z w
13 12 eqrdv x | φ = w y | x | φ = y = w
14 vsnid w w
15 eleq2 y | x | φ = y = w w y | x | φ = y w w
16 14 15 mpbiri y | x | φ = y = w w y | x | φ = y
17 sneq y = w y = w
18 17 eqeq2d y = w x | φ = y x | φ = w
19 18 elabg w V w y | x | φ = y x | φ = w
20 19 elv w y | x | φ = y x | φ = w
21 16 20 sylib y | x | φ = y = w x | φ = w
22 13 21 impbii x | φ = w y | x | φ = y = w
23 sneq z = w z = w
24 23 eqeq2d z = w y | x | φ = y = z y | x | φ = y = w
25 24 elabg w V w z | y | x | φ = y = z y | x | φ = y = w
26 25 elv w z | y | x | φ = y = z y | x | φ = y = w
27 22 20 26 3bitr4i w y | x | φ = y w z | y | x | φ = y = z
28 27 eqriv y | x | φ = y = z | y | x | φ = y = z