Metamath Proof Explorer


Theorem sn-iotalemcor

Description: Corollary of sn-iotalem . Compare sb8iota . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotalemcor ι x | φ = ι y | x | φ = y

Proof

Step Hyp Ref Expression
1 sn-iotalem y | x | φ = y = z | y | x | φ = y = z
2 1 unieqi y | x | φ = y = z | y | x | φ = y = z
3 df-iota ι x | φ = y | x | φ = y
4 df-iota ι y | x | φ = y = z | y | x | φ = y = z
5 2 3 4 3eqtr4i ι x | φ = ι y | x | φ = y