Metamath Proof Explorer


Theorem sn-iotassuni

Description: iotassuni without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotassuni ι x | φ x | φ

Proof

Step Hyp Ref Expression
1 sn-iotauni y x | φ = y ι x | φ = x | φ
2 eqimss ι x | φ = x | φ ι x | φ x | φ
3 1 2 syl y x | φ = y ι x | φ x | φ
4 sn-iotanul ¬ y x | φ = y ι x | φ =
5 0ss x | φ
6 4 5 eqsstrdi ¬ y x | φ = y ι x | φ x | φ
7 3 6 pm2.61i ι x | φ x | φ