Metamath Proof Explorer


Theorem sn-iotauni

Description: Version of iotauni using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotauni y x | φ = y ι x | φ = x | φ

Proof

Step Hyp Ref Expression
1 sn-iotaval x | φ = y ι x | φ = y
2 unieq x | φ = y x | φ = y
3 vex y V
4 3 unisn y = y
5 2 4 eqtr2di x | φ = y y = x | φ
6 1 5 eqtrd x | φ = y ι x | φ = x | φ
7 6 exlimiv y x | φ = y ι x | φ = x | φ