Metamath Proof Explorer


Theorem sn-iotaval

Description: Version of iotaval using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotaval x | φ = y ι x | φ = y

Proof

Step Hyp Ref Expression
1 df-iota ι x | φ = w | x | φ = w
2 eqeq1 x | φ = y x | φ = w y = w
3 sneqbg y V y = w y = w
4 3 elv y = w y = w
5 equcom y = w w = y
6 4 5 bitri y = w w = y
7 2 6 bitrdi x | φ = y x | φ = w w = y
8 7 alrimiv x | φ = y w x | φ = w w = y
9 uniabio w x | φ = w w = y w | x | φ = w = y
10 8 9 syl x | φ = y w | x | φ = w = y
11 1 10 eqtrid x | φ = y ι x | φ = y