Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Utility theorems
sn-iotaval
Next ⟩
sn-iotauni
Metamath Proof Explorer
Ascii
Unicode
Theorem
sn-iotaval
Description:
Version of
iotaval
using
df-iota
instead of
dfiota2
.
(Contributed by
SN
, 6-Nov-2024)
Ref
Expression
Assertion
sn-iotaval
⊢
x
|
φ
=
y
→
ι
x
|
φ
=
y
Proof
Step
Hyp
Ref
Expression
1
df-iota
⊢
ι
x
|
φ
=
⋃
w
|
x
|
φ
=
w
2
eqeq1
⊢
x
|
φ
=
y
→
x
|
φ
=
w
↔
y
=
w
3
sneqbg
⊢
y
∈
V
→
y
=
w
↔
y
=
w
4
3
elv
⊢
y
=
w
↔
y
=
w
5
equcom
⊢
y
=
w
↔
w
=
y
6
4
5
bitri
⊢
y
=
w
↔
w
=
y
7
2
6
bitrdi
⊢
x
|
φ
=
y
→
x
|
φ
=
w
↔
w
=
y
8
7
alrimiv
⊢
x
|
φ
=
y
→
∀
w
x
|
φ
=
w
↔
w
=
y
9
uniabio
⊢
∀
w
x
|
φ
=
w
↔
w
=
y
→
⋃
w
|
x
|
φ
=
w
=
y
10
8
9
syl
⊢
x
|
φ
=
y
→
⋃
w
|
x
|
φ
=
w
=
y
11
1
10
eqtrid
⊢
x
|
φ
=
y
→
ι
x
|
φ
=
y