Metamath Proof Explorer


Theorem snatpsubN

Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses snpsub.a A = Atoms K
snpsub.s S = PSubSp K
Assertion snatpsubN K AtLat P A P S

Proof

Step Hyp Ref Expression
1 snpsub.a A = Atoms K
2 snpsub.s S = PSubSp K
3 snssi P A P A
4 3 adantl K AtLat P A P A
5 atllat K AtLat K Lat
6 eqid Base K = Base K
7 6 1 atbase P A P Base K
8 eqid join K = join K
9 6 8 latjidm K Lat P Base K P join K P = P
10 5 7 9 syl2an K AtLat P A P join K P = P
11 10 adantr K AtLat P A r A P join K P = P
12 11 breq2d K AtLat P A r A r K P join K P r K P
13 eqid K = K
14 13 1 atcmp K AtLat r A P A r K P r = P
15 14 3com23 K AtLat P A r A r K P r = P
16 15 3expa K AtLat P A r A r K P r = P
17 16 biimpd K AtLat P A r A r K P r = P
18 12 17 sylbid K AtLat P A r A r K P join K P r = P
19 18 adantld K AtLat P A r A p = P q = P r K P join K P r = P
20 velsn p P p = P
21 velsn q P q = P
22 20 21 anbi12i p P q P p = P q = P
23 22 anbi1i p P q P r K p join K q p = P q = P r K p join K q
24 oveq12 p = P q = P p join K q = P join K P
25 24 breq2d p = P q = P r K p join K q r K P join K P
26 25 pm5.32i p = P q = P r K p join K q p = P q = P r K P join K P
27 23 26 bitri p P q P r K p join K q p = P q = P r K P join K P
28 velsn r P r = P
29 19 27 28 3imtr4g K AtLat P A r A p P q P r K p join K q r P
30 29 exp4b K AtLat P A r A p P q P r K p join K q r P
31 30 com23 K AtLat P A p P q P r A r K p join K q r P
32 31 ralrimdv K AtLat P A p P q P r A r K p join K q r P
33 32 ralrimivv K AtLat P A p P q P r A r K p join K q r P
34 4 33 jca K AtLat P A P A p P q P r A r K p join K q r P
35 34 ex K AtLat P A P A p P q P r A r K p join K q r P
36 13 8 1 2 ispsubsp K AtLat P S P A p P q P r A r K p join K q r P
37 35 36 sylibrd K AtLat P A P S
38 37 imp K AtLat P A P S