Metamath Proof Explorer


Theorem snclseqg

Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses snclseqg.x X = Base G
snclseqg.j J = TopOpen G
snclseqg.z 0 ˙ = 0 G
snclseqg.r ˙ = G ~ QG S
snclseqg.s S = cls J 0 ˙
Assertion snclseqg G TopGrp A X A ˙ = cls J A

Proof

Step Hyp Ref Expression
1 snclseqg.x X = Base G
2 snclseqg.j J = TopOpen G
3 snclseqg.z 0 ˙ = 0 G
4 snclseqg.r ˙ = G ~ QG S
5 snclseqg.s S = cls J 0 ˙
6 5 imaeq2i x X A + G x S = x X A + G x cls J 0 ˙
7 tgpgrp G TopGrp G Grp
8 7 adantr G TopGrp A X G Grp
9 2 1 tgptopon G TopGrp J TopOn X
10 9 adantr G TopGrp A X J TopOn X
11 topontop J TopOn X J Top
12 10 11 syl G TopGrp A X J Top
13 1 3 grpidcl G Grp 0 ˙ X
14 8 13 syl G TopGrp A X 0 ˙ X
15 14 snssd G TopGrp A X 0 ˙ X
16 toponuni J TopOn X X = J
17 10 16 syl G TopGrp A X X = J
18 15 17 sseqtrd G TopGrp A X 0 ˙ J
19 eqid J = J
20 19 clsss3 J Top 0 ˙ J cls J 0 ˙ J
21 12 18 20 syl2anc G TopGrp A X cls J 0 ˙ J
22 21 17 sseqtrrd G TopGrp A X cls J 0 ˙ X
23 5 22 eqsstrid G TopGrp A X S X
24 simpr G TopGrp A X A X
25 eqid + G = + G
26 1 4 25 eqglact G Grp S X A X A ˙ = x X A + G x S
27 8 23 24 26 syl3anc G TopGrp A X A ˙ = x X A + G x S
28 eqid x X A + G x = x X A + G x
29 28 1 25 2 tgplacthmeo G TopGrp A X x X A + G x J Homeo J
30 19 hmeocls x X A + G x J Homeo J 0 ˙ J cls J x X A + G x 0 ˙ = x X A + G x cls J 0 ˙
31 29 18 30 syl2anc G TopGrp A X cls J x X A + G x 0 ˙ = x X A + G x cls J 0 ˙
32 6 27 31 3eqtr4a G TopGrp A X A ˙ = cls J x X A + G x 0 ˙
33 df-ima x X A + G x 0 ˙ = ran x X A + G x 0 ˙
34 15 resmptd G TopGrp A X x X A + G x 0 ˙ = x 0 ˙ A + G x
35 34 rneqd G TopGrp A X ran x X A + G x 0 ˙ = ran x 0 ˙ A + G x
36 33 35 syl5eq G TopGrp A X x X A + G x 0 ˙ = ran x 0 ˙ A + G x
37 3 fvexi 0 ˙ V
38 oveq2 x = 0 ˙ A + G x = A + G 0 ˙
39 38 eqeq2d x = 0 ˙ y = A + G x y = A + G 0 ˙
40 37 39 rexsn x 0 ˙ y = A + G x y = A + G 0 ˙
41 1 25 3 grprid G Grp A X A + G 0 ˙ = A
42 7 41 sylan G TopGrp A X A + G 0 ˙ = A
43 42 eqeq2d G TopGrp A X y = A + G 0 ˙ y = A
44 40 43 syl5bb G TopGrp A X x 0 ˙ y = A + G x y = A
45 44 abbidv G TopGrp A X y | x 0 ˙ y = A + G x = y | y = A
46 eqid x 0 ˙ A + G x = x 0 ˙ A + G x
47 46 rnmpt ran x 0 ˙ A + G x = y | x 0 ˙ y = A + G x
48 df-sn A = y | y = A
49 45 47 48 3eqtr4g G TopGrp A X ran x 0 ˙ A + G x = A
50 36 49 eqtrd G TopGrp A X x X A + G x 0 ˙ = A
51 50 fveq2d G TopGrp A X cls J x X A + G x 0 ˙ = cls J A
52 32 51 eqtrd G TopGrp A X A ˙ = cls J A