Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sndisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 | ||
2 | moeq | ||
3 | simpr | ||
4 | velsn | ||
5 | 3 4 | sylib | |
6 | 5 | equcomd | |
7 | 6 | moimi | |
8 | 2 7 | ax-mp | |
9 | 1 8 | mpgbir |