Metamath Proof Explorer


Theorem sndisj

Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion sndisj Disj x A x

Proof

Step Hyp Ref Expression
1 dfdisj2 Disj x A x y * x x A y x
2 moeq * x x = y
3 simpr x A y x y x
4 velsn y x y = x
5 3 4 sylib x A y x y = x
6 5 equcomd x A y x x = y
7 6 moimi * x x = y * x x A y x
8 2 7 ax-mp * x x A y x
9 1 8 mpgbir Disj x A x