Metamath Proof Explorer


Theorem snec

Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis snec.1 A V
Assertion snec A R = A / R

Proof

Step Hyp Ref Expression
1 snec.1 A V
2 eceq1 x = A x R = A R
3 2 eqeq2d x = A y = x R y = A R
4 1 3 rexsn x A y = x R y = A R
5 4 abbii y | x A y = x R = y | y = A R
6 df-qs A / R = y | x A y = x R
7 df-sn A R = y | y = A R
8 5 6 7 3eqtr4ri A R = A / R